Patents by Inventor Yu Gu

Yu Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140103527
    Abstract: A semiconductor device has a substrate. A plurality of conductive vias is formed through the substrate. A conductive layer is formed over the substrate. An insulating layer is formed over conductive layer. A portion of the substrate is removed to expose the conductive vias. A plurality of vertical interconnect structures is formed over the substrate. A first semiconductor die is disposed over the substrate. A height of the vertical interconnect structures is less than a height of the first semiconductor die. An encapsulant is deposited over the first semiconductor die and the vertical interconnect structures. A first portion of the encapsulant is removed from over the first semiconductor die while leaving a second portion of the encapsulant over the vertical interconnect structures. The second portion of the encapsulant is removed to expose the vertical interconnect structures. A second semiconductor die is disposed over the first semiconductor die.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Pandi C. Marimuthu, Yaojian Lin, Kang Chen, Yu Gu, Won Kyoung Choi
  • Publication number: 20140091454
    Abstract: A semiconductor device includes a semiconductor die. An encapsulant is formed around the semiconductor die. A build-up interconnect structure is formed over a first surface of the semiconductor die and encapsulant. A first supporting layer is formed over a second surface of the semiconductor die as a supporting substrate or silicon wafer disposed opposite the build-up interconnect structure. A second supporting layer is formed over the first supporting layer an includes a fiber enhanced polymer composite material comprising a footprint including an area greater than or equal to an area of a footprint of the semiconductor die. The semiconductor die comprises a thickness less than 450 micrometers (?m). The thickness of the semiconductor die is at least 1 ?m less than a difference between a total thickness of the semiconductor device and a thickness of the build-up interconnect structure and the second supporting layer.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Kang Chen, Yu Gu
  • Publication number: 20140048906
    Abstract: A semiconductor device has a semiconductor package and an interposer disposed over the semiconductor package. The semiconductor package has a first semiconductor die and a modular interconnect unit disposed in a peripheral region around the first semiconductor die. A second semiconductor die is disposed over the interposer opposite the semiconductor package. An interconnect structure is formed between the interposer and the modular interconnect unit. The interconnect structure is a conductive pillar or stud bump. The modular interconnect unit has a core substrate and a plurality of vertical interconnects formed through the core substrate. A build-up interconnect structure is formed over the first semiconductor die and modular interconnect unit. The vertical interconnects of the modular interconnect unit are exposed by laser direct ablation. An underfill is deposited between the interposer and semiconductor package.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 20, 2014
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Il Kwon Shim, Yaojian Lin, Pandi C. Marimuthu, Kang Chen, Yu Gu
  • Publication number: 20140047398
    Abstract: Improved masks for double patterning lithography are described. In one example, conflict spaces between features of a target design are identified. The conflict spaces are represented as nodes of a graph. Connections are inserted between nodes based on a local search. The connections are cut to determine double patterning mask assignment. The connections are extended to form a checkerboard that is then overlayed on the target mask design to split the features of the target mask design for double patterning.
    Type: Application
    Filed: December 29, 2011
    Publication date: February 13, 2014
    Inventors: Carlos R. Castro-Pareja, Allan Xiao Yu Gu
  • Patent number: 8593972
    Abstract: In one embodiment, a test technique verifies a drop probability curve implemented by an intermediate node of a computer network, wherein a test point of the drop probability curve has a drop probability value and a queue length value. Traffic may be loaded into a queue of the node at a constant bit rate that is based on the drop probability value and an output rate associated with queue. An average traffic latency may then be measured, and an actual queue length may be calculated by multiplying the measured average traffic latency with the output rate. The drop probability curve may be verified when the calculated queue length is within a specified tolerance of the queue length value associated with the test point.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: November 26, 2013
    Assignee: Cisco Technology, Inc.
    Inventor: Yu Gu
  • Publication number: 20130277851
    Abstract: A semiconductor device has a modular interconnect unit or interconnect structure disposed in a peripheral region of the semiconductor die. An encapsulant is deposited over the semiconductor die and interconnect structure. A first insulating layer is formed over the semiconductor die and interconnect structure. A plurality of openings is formed in the first insulating layer over the interconnect structure. The openings have a pitch of 40 micrometers. The openings include a circular shape, ring shape, cross shape, or lattice shape. A conductive layer is deposited over the first insulating layer. The conductive layer includes a planar surface. A second insulating layer is formed over the conductive layer. A portion of the encapsulant is removed to expose the semiconductor die and the interconnect structure. The modular interconnect unit includes a vertical interconnect structure. The modular interconnect unit forms part of an interlocking pattern around the semiconductor die.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Inventors: Yaojian Lin, Kang Chen, Yu Gu, Pandi Chelvam Marimuthu
  • Publication number: 20130249115
    Abstract: A semiconductor device has a carrier with a die attach area. A semiconductor die is mounted to the die attach area with a back surface opposite the carrier. A modular interconnect unit is mounted over the carrier and around or in a peripheral region around the semiconductor die such that the modular interconnect unit is offset from the back surface of the semiconductor die. An encapsulant is deposited over the carrier, semiconductor die, and modular interconnect unit. A first portion of the encapsulant is removed to expose the semiconductor die and a second portion is removed to expose the modular interconnect unit. The carrier is removed. An interconnect structure is formed over the semiconductor die and modular interconnect unit. The modular interconnect unit includes a vertical interconnect structures or bumps through the semiconductor device. The modular interconnect unit forms part of an interlocking pattern around the semiconductor die.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi Chelvam Marimuthu, Kang Chen, Yu Gu
  • Publication number: 20130249101
    Abstract: A semiconductor device has a carrier with a die attach area. A semiconductor die is mounted to the die attach area with a back surface opposite the carrier. A modular interconnect unit is mounted over the carrier and around or in a peripheral region around the semiconductor die such that the modular interconnect unit is offset from the back surface of the semiconductor die. An encapsulant is deposited over the carrier, semiconductor die, and modular interconnect unit. A first portion of the encapsulant is removed to expose the semiconductor die and a second portion is removed to expose the modular interconnect unit. The carrier is removed. An interconnect structure is formed over the semiconductor die and modular interconnect unit. The modular interconnect unit includes a vertical interconnect structures or bumps through the semiconductor device. The modular interconnect unit forms part of an interlocking pattern around the semiconductor die.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 26, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi Chelvam Marimuthu, Kang Chen, Yu Gu
  • Publication number: 20130249106
    Abstract: A semiconductor device has a semiconductor die. An encapsulant is deposited around the semiconductor die. An interconnect structure having a conductive bump is formed over the encapsulant and semiconductor die. A mechanical support layer is formed over the interconnect structure and around the conductive bump. The mechanical support layer is formed over a corner of the semiconductor die and over a corner of the interconnect structure. An opening is formed through the encapsulant that extends to the interconnect structure. A conductive material is deposited within the opening to form a conductive through encapsulant via (TEV) that is electrically connected to the interconnect structure. A semiconductor device is mounted to the TEV and over the semiconductor die to form a package-on-package (PoP) device. A warpage balance layer is formed over the encapsulant opposite the interconnect structure.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Kang Chen, Yu Gu
  • Publication number: 20130241048
    Abstract: A semiconductor device has a semiconductor die and encapsulant deposited over the semiconductor die. A first insulating layer is formed over the die and encapsulant. The first insulating layer is cured with multiple dwell cycles to enhance adhesion to the die and encapsulant. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. The second insulating layer is cured with multiple dwell cycles to enhance adhesion to the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. The first, second, and third insulating layers have different CTE. The second insulating layer or third insulating layer is cured to a dense state to block moisture.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 19, 2013
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Kang Chen, Yu Gu, Wei Meng, Chee Siang Ong
  • Publication number: 20130227744
    Abstract: The present invention provides nucleic acids and methods for conferring resistance to bacterial disease in plants. The present invention also provides promoters and promoter sequences useful for controlling expression in transgenic plants.
    Type: Application
    Filed: September 6, 2010
    Publication date: August 29, 2013
    Applicant: TEMASEK LIFE SCIENCES LABORATORY LIMITED
    Inventors: Zhong Chao Yin, Ke Yu Gu, Dong Sheng Tian
  • Patent number: 8492203
    Abstract: A semiconductor device has a semiconductor die and encapsulant deposited over the semiconductor die. A first insulating layer is formed over the die and encapsulant. The first insulating layer is cured with multiple dwell cycles to enhance adhesion to the die and encapsulant. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. The second insulating layer is cured with multiple dwell cycles to enhance adhesion to the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. The first, second, and third insulating layers have different CTE. The second insulating layer or third insulating layer is cured to a dense state to block moisture.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: July 23, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Kang Chen, Yu Gu, Wei Meng, Chee Siang Ong
  • Patent number: 8456002
    Abstract: A semiconductor device has a semiconductor die and conductive layer formed over a surface of the semiconductor die. A first channel can be formed in the semiconductor die. An encapsulant is deposited over the semiconductor die. A second channel can be formed in the encapsulant. A first insulating layer is formed over the semiconductor die and first conductive layer and into the first channel. The first insulating layer extends into the second channel. The first insulating layer has characteristics of tensile strength greater than 150 MPa, elongation between 35-150%, and thickness of 2-30 micrometers. A second insulating layer can be formed over the semiconductor die prior to forming the first insulating layer. An interconnect structure is formed over the semiconductor die and encapsulant. The interconnect structure is electrically connected to the first conductive layer. The first insulating layer provides stress relief during formation of the interconnect structure.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: June 4, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: Yaojian Lin, Pandi C. Marimuthu, Kang Chen, Hin Hwa Goh, Yu Gu, Il Kwon Shim, Rui Huang, Seng Guan Chow, Jianmin Fang, Xia Feng
  • Publication number: 20130113092
    Abstract: A semiconductor device has a semiconductor die and conductive layer formed over a surface of the semiconductor die. A first channel can be formed in the semiconductor die. An encapsulant is deposited over the semiconductor die. A second channel can be formed in the encapsulant. A first insulating layer is formed over the semiconductor die and first conductive layer and into the first channel. The first insulating layer extends into the second channel. The first insulating layer has characteristics of tensile strength greater than 150 MPa, elongation between 35-150%, and thickness of 2-30 micrometers. A second insulating layer can be formed over the semiconductor die prior to forming the first insulating layer. An interconnect structure is formed over the semiconductor die and encapsulant. The interconnect structure is electrically connected to the first conductive layer. The first insulating layer provides stress relief during formation of the interconnect structure.
    Type: Application
    Filed: December 21, 2011
    Publication date: May 9, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi C. Marimuthu, Kang Chen, Hin Hwa Goh, Yu Gu, Il Kwon Shim, Rui Huang, Seng Guan Chow, Jianmin Fang, Xia Feng
  • Publication number: 20130083657
    Abstract: In one embodiment, a test technique verifies a drop probability curve implemented by an intermediate node of a computer network, wherein a test point of the drop probability curve has a drop probability value and a queue length value. Traffic may be loaded into a queue of the node at a constant bit rate that is based on the drop probability value and an output rate associated with queue. An average traffic latency may then be measured, and an actual queue length may be calculated by multiplying the measured average traffic latency with the output rate. The drop probability curve may be verified when the calculated queue length is within a specified tolerance of the queue length value associated with the test point.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Inventor: Yu Gu
  • Patent number: 8291783
    Abstract: A powerless helical locking mechanism for a door includes a screw with a variable lead angle connected with a power source, and a self-adaptive nut connected to the door. The helical slot of the screw is divided into a working segment with the helical lead angle greater than the friction angle, a closing segment with the helical lead angle smaller than the friction angle, and a transition segment between the closing and working segments. The power source actuates the screw to rotate bidirectionally.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: October 23, 2012
    Assignee: Nanjing Kangni Mechanical & Electrical Co., Ltd.
    Inventors: Xiang Shi, Yu Gu, Wenping Liu, Guannan Xu, Baogang Chen, Bangrong Ni
  • Publication number: 20120187584
    Abstract: A semiconductor device has a semiconductor die and encapsulant deposited over the semiconductor die. A first insulating layer is formed over the die and encapsulant. The first insulating layer is cured with multiple dwell cycles to enhance adhesion to the die and encapsulant. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. The second insulating layer is cured with multiple dwell cycles to enhance adhesion to the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. The first, second, and third insulating layers have different CTE. The second insulating layer or third insulating layer is cured to a dense state to block moisture.
    Type: Application
    Filed: June 20, 2011
    Publication date: July 26, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Kang Chen, Yu Gu, Wei Meng, Chee Siang Ong
  • Publication number: 20120112340
    Abstract: A semiconductor device has a semiconductor die and conductive layer formed over a surface of the semiconductor die. A first channel can be formed in the semiconductor die. An encapsulant is deposited over the semiconductor die. A second channel can be formed in the encapsulant. A first insulating layer is formed over the semiconductor die and first conductive layer and into the first channel. The first insulating layer extends into the second channel. The first insulating layer has characteristics of tensile strength greater than 150 MPa, elongation between 35-150%, and thickness of 2-30 micrometers. A second insulating layer can be formed over the semiconductor die prior to forming the first insulating layer. An interconnect structure is formed over the semiconductor die and encapsulant. The interconnect structure is electrically connected to the first conductive layer. The first insulating layer provides stress relief during formation of the interconnect structure.
    Type: Application
    Filed: December 21, 2011
    Publication date: May 10, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi C. Marimuthu, Kang Chen, Hin Hwa Goh, Yu Gu, Il Kwon Shim, Rui Huang, Seng Guan Chow, Jianmin Fang, Xia Feng
  • Patent number: 8122347
    Abstract: A document editing support device includes: an object obtaining unit that obtains at least one object as data representing at least one of a text and an image included in a document as a target to be edited; a split ratio storage unit that stores a predetermined split ratio; a reference line setting unit that extracts two lines from at least one of a circumscribed polygon and a boundary and sets the extracted lines as reference lines, the circumscribed polygon being of an object other than a target object, a location of which is to be determined relative to at least one object obtained by the object obtaining unit, and the boundary being of a layout area where objects are to be located in the document; a virtual line generation unit that generates a virtual line that splits an interval between the two reference lines set by the reference line setting unit, at a split ratio stored in the split ratio storage unit; and a location unit that determines a location of the target object, the location of which is to b
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: February 21, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Hitoshi Yamakado, Yu Gu, Atsushi Nagahara
  • Patent number: 8054515
    Abstract: An image ordering rule is selected from among multiple image ordering rules that use mutually different types of image characteristic values to determine the order of arrangement of images. The image characteristic value used by the selected image ordering rule is obtained for each of a plurality of images. The order of arrangement of a plurality of images is determined based on the selected image ordering rule and the image characteristic values for a plurality of images. The number of images to be placed on each page is determined based on the maximum number of images that can be included in each page of the electronic album. An electronic album in which a plurality of images are laid out on multiple pages in sequential order is created in accordance with the order of arrangement of a plurality of images and the number of images to be placed on each page.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: November 8, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Hitoshi Yamakado, Yu Gu, Toru Miyamoto