Patents by Inventor Yu-Hsiang Chen
Yu-Hsiang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12272693Abstract: A method for fabricating a semiconductor device includes the steps of: providing a substrate having a high-voltage (HV) region and a low-voltage (LV) region; forming a base on the HV region and fin-shaped structures on the LV region; forming a first insulating around the fin-shaped structures; removing the base, the first insulating layer, and part of the fin-shaped structures to form a first trench in the HV region and a second trench in the LV region; forming a second insulating layer in the first trench and the second trench; and planarizing the second insulating layer to form a first shallow trench isolation (STI) on the HV region and a second STI on the LV region.Type: GrantFiled: March 21, 2022Date of Patent: April 8, 2025Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Yu-Hsiang Lin, Chien-Ting Lin, Chia-Jung Hsu, Chin-Hung Chen
-
Patent number: 12272600Abstract: A method includes forming a dielectric layer over an epitaxial source/drain region. An opening is formed in the dielectric layer. The opening exposes a portion of the epitaxial source/drain region. A barrier layer is formed on a sidewall and a bottom of the opening. An oxidation process is performing on the sidewall and the bottom of the opening. The oxidation process transforms a portion of the barrier layer into an oxidized barrier layer and transforms a portion of the dielectric layer adjacent to the oxidized barrier layer into a liner layer. The oxidized barrier layer is removed. The opening is filled with a conductive material in a bottom-up manner. The conductive material is in physical contact with the liner layer.Type: GrantFiled: May 13, 2022Date of Patent: April 8, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Pin-Wen Chen, Chang-Ting Chung, Yi-Hsiang Chao, Yu-Ting Wen, Kai-Chieh Yang, Yu-Chen Ko, Peng-Hao Hsu, Ya-Yi Cheng, Min-Hsiu Hung, Chun-Hsien Huang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
-
Publication number: 20250113589Abstract: A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, an isolation structure on the SDB structure, a first spacer adjacent to the isolation structure, a metal gate adjacent to the isolation structure, a shallow trench isolation (STI around the fin-shaped structure, and a second isolation structure on the STI. Preferably, a top surface of the first spacer is lower than a top surface of the isolation structure and a bottom surface of the first spacer is lower than a bottom surface of the metal gate.Type: ApplicationFiled: December 12, 2024Publication date: April 3, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
-
Publication number: 20250110291Abstract: Provided are a package structure and a method of forming the same. The package structure includes a bottom package having a first sidewall and a second sidewall opposite to each other; a hybrid path layer disposed on the bottom package, wherein the hybrid path layer comprises an optical path layer and an electrical path layer, and at least one optical path of the optical path layer extends from the first sidewall of the bottom package beyond a center of the bottom package; and a plurality of dies bonded onto the hybrid path layer.Type: ApplicationFiled: October 2, 2023Publication date: April 3, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chung-Ming Weng, Yu-Hao Chen, Hao-Yi Tsai, An-Jhih Su, Tzuan-Horng Liu, Po-Yuan Teng, Tsung-Yuan Yu, Che-Hsiang Hsu
-
Patent number: 12265201Abstract: A light-emitting device array includes a first light-emitting device, a second light-emitting device, and a third light-emitting device. A first beam shaping structure of the first light-emitting device is configured to convert light emitted by a first light-emitting structure of first light-emitting device into first structured light. A second beam shaping structure of the second light-emitting device is configured to convert light emitted by a second light-emitting structure of second light-emitting device into second structured light. Speckle patterns and spatial distributions of the first structured light and the second structured light on a projection plane are the same. A third beam shaping structure of the third light-emitting device is configured to convert light emitted by a third light-emitting structure of third light-emitting device into third structured light.Type: GrantFiled: September 7, 2023Date of Patent: April 1, 2025Assignee: HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Jun-Da Chen, Yu-Heng Hong, Wen-Cheng Hsu, Tzu-Hsiang Lan, Hao-Chung Kuo
-
Publication number: 20250099807Abstract: A resistance-adjustable self-power-generating treadmill includes a chassis; a power generator; a belt driving device including two rollers, a circulating running belt, and a power transmission unit; a controller electrically connected with the power generator; a battery electrically connected with the controller; a handlebar; and display and control unit, which is mounted on the handlebar to allow a user to watch messages and to control, through touching the display and control unit, the controller to adjust the power generation amount of the power generator. Through adjusting the power generation amount of the power generator, the resisting force that is applied from the power generator to the circulating running belt is also controllable.Type: ApplicationFiled: September 25, 2023Publication date: March 27, 2025Inventor: Yu Hsiang Chen
-
Publication number: 20250101628Abstract: A plating membrane includes a support structure extending radially outward from a nozzle that is to direct a flow of a plating solution toward a wafer. The plating membrane also includes a frame, supported by the support structure, having an inner wall that is angled outward from the nozzle. The outward angle of the inner wall relative to the nozzle directs a flow of plating solution from the nozzle in a manner that increases uniformity of the flow of the plating solution toward the wafer, reduces the amount of plating solution that is redirected inward toward the center of the plating membrane, reduces plating material voids in trenches of the wafer (e.g., high aspect ratio trenches), and/or the like.Type: ApplicationFiled: December 10, 2024Publication date: March 27, 2025Inventors: Yung-Hsiang CHEN, Hung-San LU, Ting-Ying WU, Chuang CHIHCHOUS, Yu-Lung YEH
-
Patent number: 12262555Abstract: A semiconductor device includes a substrate, a plurality of planar transistors, a fin-type field effect transistor and a first nonactive structure. The substrate includes a first region and a second region. The first region includes a plurality of first planar active regions and a nonactive region. The nonactive region is located between or aside the plurality of first planar active regions and includes a second planar active region. The second region has a fin active region. The plurality of planar transistors are located in the plurality of first planar active regions within the first region. The fin-type field effect transistor is located on the fin active region within the second region. The first nonactive structure is located in the nonactive region between the plurality of planar transistors.Type: GrantFiled: May 18, 2022Date of Patent: March 25, 2025Assignee: United Microelectronics Corp.Inventors: Jia-He Lin, Yu-Ruei Chen, Yu-Hsiang Lin
-
Patent number: 12261086Abstract: A method for fabricating a semiconductor device includes first providing a substrate having a high-voltage (HV) region, a medium-voltage (MV) region, and a low-voltage (LV) region, forming a HV device on the HV region, and forming a LV device on the LV region. Preferably, the HV device includes a first base on the substrate, a first gate dielectric layer on the first base, and a first gate electrode on the first gate dielectric layer. The LV device includes a fin-shaped structure on the substrate, and a second gate electrode on the fin-shaped structure, in which a top surface of the first gate dielectric layer is even with a top surface of the fin-shaped structure.Type: GrantFiled: January 27, 2022Date of Patent: March 25, 2025Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chih-Kai Hsu, Ssu-I Fu, Yu-Hsiang Lin, Chien-Ting Lin, Chun-Ya Chiu, Chia-Jung Hsu, Chin-Hung Chen
-
Publication number: 20250096059Abstract: A redistribution structure is made using filler-free insulating materials with high shrinkage rate. As a result, good planarity may be achieved without the need to perform a planarization of each insulating layer of the redistribution structure, thereby simplifying the formation of the redistribution structure.Type: ApplicationFiled: December 2, 2024Publication date: March 20, 2025Inventors: Wei-Chih Chen, Sih-Hao Liao, Yu-Hsiang Hu, Hung-Jui Kuo
-
Publication number: 20250079363Abstract: A bonded semiconductor structure includes a first device wafer and a second device wafer. The first device includes a first dielectric layer, a first bonding pad disposed in the first dielectric layer, and a first bonding layer on the first dielectric layer. The second device wafer includes a second dielectric layer, a second bonding layer on the second dielectric layer, and a second bonding pad disposed in the second dielectric layer and extending through the second bonding layer and at least a portion of the first bonding layer. A conductive bonding interface between the first bonding pad and the second bonding pad and a dielectric bonding interface between the first bonding layer and the second bonding layer include a step-height in a direction perpendicular to the dielectric bonding interface and the conductive bonding interface. A height of the step-height is smaller than a thickness of the first bonding layer.Type: ApplicationFiled: November 18, 2024Publication date: March 6, 2025Applicant: UNITED MICROELECTRONICS CORP.Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
-
Patent number: 12243839Abstract: A bonded semiconductor structure includes a first device wafer and a second device wafer. The first device includes a first dielectric layer, a first bonding pad disposed in the first dielectric layer, and a first bonding layer on the first dielectric layer. The second device wafer includes a second dielectric layer, a second bonding layer on the second dielectric layer, and a second bonding pad disposed in the second dielectric layer and extending through the second bonding layer and at least a portion of the first bonding layer. A conductive bonding interface between the first bonding pad and the second bonding pad and a dielectric bonding interface between the first bonding layer and the second bonding layer include a step-height in a direction perpendicular to the dielectric bonding interface and the conductive bonding interface.Type: GrantFiled: February 2, 2024Date of Patent: March 4, 2025Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
-
Patent number: 12236814Abstract: A display method and a display system for an anti-dizziness reference image are provided. The display system includes a display, a range extraction unit, an information analyzing unit, an object analyzing unit and an image setting unit. The display is used to display the anti-dizziness reference image. The range extraction unit is used to obtain a gaze background range of a user. The image setting unit is used to set an image hue, an image lightness, an image brightness, an image content or an ambient lighting display content of the anti-dizziness reference image according to a background hue information, a background lightness information, a background brightness information, or a road information of the gaze background range; or set an image ratio between the anti-dizziness reference image and a display area of the display according to an object distance or an object area of the watched object.Type: GrantFiled: May 26, 2023Date of Patent: February 25, 2025Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Ya-Rou Hsu, Chien-Ju Lee, Hong-Ming Dai, Yu-Hsiang Tsai, Chia-Hsun Tu, Kuan-Ting Chen
-
Publication number: 20250059995Abstract: A multifunctional expansion bolt assembly includes a sleeve, a screw rod, and a connecting member. The sleeve includes a hollow body formed between first and second ends of the sleeve. The second end has at least one open groove. The screw rod includes a threaded portion. At least a portion of the threaded portion protrudes beyond the first end of the sleeve. A second end of the screw rod includes a conic portion having gradually increasing diameters towards the second end of the screw rod. The conic portion has a maximal diameter greater than an inner diameter of the second end of the sleeve. The screw rod includes at least one engaging portion having non-circular cross section and engaging with the at least one open groove. The connecting member includes an inner threading in threading connection with a portion of the threaded portion of the screw rod.Type: ApplicationFiled: September 25, 2023Publication date: February 20, 2025Inventors: Yu-Hsiang Su, I-Chun Chen
-
Publication number: 20250056859Abstract: A semiconductor device includes a substrate, a plurality of planar transistors, a fin-type field effect transistor and a first nonactive structure. The substrate includes a first region and a second region. The first region includes a plurality of first planar active regions and a nonactive region. The nonactive region is located between or aside the plurality of first planar active regions and includes a second planar active region. The second region has a fin active region. The plurality of planar transistors are located in the plurality of first planar active regions within the first region. The fin-type field effect transistor is located on the fin active region within the second region. The first nonactive structure is located in the nonactive region between the plurality of planar transistors.Type: ApplicationFiled: October 28, 2024Publication date: February 13, 2025Applicant: United Microelectronics Corp.Inventors: Jia-He Lin, Yu-Ruei Chen, Yu-Hsiang Lin
-
Publication number: 20250054775Abstract: A method includes forming a package, which includes forming a plurality of redistribution lines over a carrier, and forming a thermal dissipation block over the carrier. The plurality of redistribution lines and the thermal dissipation block are formed by common processes. The thermal dissipation block has a first metal density, and the plurality of redistribution lines have a second metal density smaller than the first metal density. The method further includes forming a metal post over the carrier, placing a device die directly over the thermal dissipation block, and encapsulating the device die and the metal post in an encapsulant. The package is then de-bonded from the carrier.Type: ApplicationFiled: October 31, 2024Publication date: February 13, 2025Inventors: Ching-Yi Lin, Yu-Hao Chen, Fong-Yuan Chang, Po-Hsiang Huang, Jyh Chwen Frank Lee, Shuo-Mao Chen
-
Patent number: 12218009Abstract: A method of forming a semiconductor device includes forming a first dielectric layer over a front side of a wafer, the wafer having a plurality of dies at the front side of the wafer, the first dielectric layer having a first shrinkage ratio smaller than a first pre-determined threshold; curing the first dielectric layer at a first temperature, where after curing the first dielectric layer, a first distance between a highest point of an upper surface of the first dielectric layer and a lowest point of the upper surface of the first dielectric layer is smaller than a second pre-determined threshold; thinning the wafer from a backside of the wafer; and performing a dicing process to separate the plurality of dies into individual dies.Type: GrantFiled: August 1, 2023Date of Patent: February 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Meng-Che Tu, Wei-Chih Chen, Sih-Hao Liao, Yu-Hsiang Hu, Hung-Jui Kuo, Chen-Hua Yu
-
Patent number: 12218082Abstract: A memory device including a base semiconductor die, conductive terminals, memory dies, an insulating encapsulation and a buffer cap is provided. The conductive terminals are disposed on a first surface of the base semiconductor die. The memory dies are stacked over a second surface of the base semiconductor die, and the second surface of the base semiconductor die is opposite to the first surface of the base semiconductor die. The insulating encapsulation is disposed on the second surface of the base semiconductor die and laterally encapsulates the memory dies. The buffer cap covers the first surface of the base semiconductor die, sidewalls of the base semiconductor die and sidewalls of the insulating encapsulation. A package structure including the above-mentioned memory device is also provided.Type: GrantFiled: November 9, 2023Date of Patent: February 4, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kai-Ming Chiang, Chao-wei Li, Wei-Lun Tsai, Chia-Min Lin, Yi-Da Tsai, Sheng-Feng Weng, Yu-Hao Chen, Sheng-Hsiang Chiu, Chih-Wei Lin, Ching-Hua Hsieh
-
Publication number: 20250040213Abstract: A semiconductor structure includes a source/drain feature in the semiconductor layer. The semiconductor structure includes a dielectric layer over the source/drain feature. The semiconductor structure includes a silicide layer over the source/drain feature. The semiconductor structure includes a barrier layer over the silicide layer. The semiconductor structure includes a seed layer over the barrier layer. The semiconductor structure includes a metal layer between a sidewall of the seed layer and a sidewall of the dielectric layer, a sidewall of each of the silicide layer, the barrier layer, and the metal layer directly contacting the sidewall of the dielectric layer. The semiconductor structure includes a source/drain contact over the seed layer.Type: ApplicationFiled: July 27, 2023Publication date: January 30, 2025Applicant: Taiwan Semiconductor Manufacturing Company Ltd.Inventors: Yi-Hsiang Chao, Peng-Hao Hsu, Yu-Shiuan Wang, Chi-Yuan Chen, Yu-Hsiang Liao, Chun-Hsien Huang, Hung-Chang Hsu, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
-
Patent number: D1068055Type: GrantFiled: September 7, 2021Date of Patent: March 25, 2025Assignee: Delta Electronics, Inc.Inventors: Ko-Neng Huang, Yu-Hsiang Huang, Yen-Lin Chen