Patents by Inventor Yu-Hung Chou

Yu-Hung Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120419
    Abstract: A lateral diffusion metal-oxide semiconductor (LDMOS) device includes a first gate structure and a second gate structure extending along a first direction on a substrate, a first source region extending along the first direction on one side of the first gate structure, a second source region extending along the first direction on one side of the second gate structure, a drain region extending along the first direction between the first gate structure and the second gate structure, a guard ring surrounding the first gate structure and the second gate structure, and a shallow trench isolation (STI) surrounding the guard ring.
    Type: Application
    Filed: December 5, 2023
    Publication date: April 11, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ling-Chun Chou, Yu-Hung Chang, Kun-Hsien Lee
  • Publication number: 20240105839
    Abstract: A lateral diffusion metal-oxide semiconductor (LDMOS) device includes a first gate structure and a second gate structure extending along a first direction on a substrate, a first source region extending along the first direction on one side of the first gate structure, a second source region extending along the first direction on one side of the second gate structure, a drain region extending along the first direction between the first gate structure and the second gate structure, a guard ring surrounding the first gate structure and the second gate structure, and a shallow trench isolation (STI) surrounding the guard ring.
    Type: Application
    Filed: December 5, 2023
    Publication date: March 28, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ling-Chun Chou, Yu-Hung Chang, Kun-Hsien Lee
  • Publication number: 20240085667
    Abstract: A photolithography projection lens, having a plurality of lens elements and a light diaphragm arranged among them, arranged along an optical axis, and comprising an object side and an image side respectively arranged at the front and rear ends of the plurality of lens elements; wherein: the diopters of the two lenses respectively near the object side and the image side must be positive; each of the lens elements is a single lens without cement; the angle between the chief rays at different image height positions and the optical axis is <1 degree, and the angle between the chief rays at different object height positions and the optical axis is <1 degree; and under the projection of 350˜450 nm wavelength light, it provide the imaging effect of precise magnification.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: SHENG CHE WU, YU HUNG CHOU, YI HUA LIN, YUAN HUNG SU
  • Publication number: 20240089611
    Abstract: The present invention relates to a method of image fusion, which uses the brightness difference of the current frame and the previous frame to determine whether the pixel in a frame image is static or dynamic. If the current pixel is static, the previous corresponding pixel is superimposed onto the current pixel; if the current pixel is dynamic, the previous corresponding pixel is replaced with the current pixel.
    Type: Application
    Filed: September 7, 2023
    Publication date: March 14, 2024
    Inventors: Ping-Hung Yin, Yung-Ming Chou, Bo-Jia Lin, Yu-Sheng Liao
  • Publication number: 20240087953
    Abstract: A semiconductor device and method of formation are provided. The semiconductor device comprises a silicide layer over a substrate, a metal plug in an opening defined by a dielectric layer over the substrate, a first metal layer between the metal plug and the dielectric layer and between the metal plug and the silicide layer, a second metal layer over the first metal layer, and an amorphous layer between the first metal layer and the second metal layer.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: Yu-Hung Lin, Sheng-Hsuan Lin, Chih-Wei Chang, You-Hua Chou
  • Patent number: 11899188
    Abstract: An optical lens system includes, in order from a magnified side to a minified side, a first lens group of positive refractive power and a second lens group of positive refractive power. The first lens group includes a first lens and a second lens, and the second lens group includes a third lens and a fourth lens. One of the third lens and the fourth lens includes one aspheric surface, and each of the lenses in the optical lens system is a singlet lens. The optical lens satisfies a condition of TE(?=400)>94%, where TE(?=400) denotes an overall transmittance of all of the lenses in the optical lens system measured at a wavelength of 400 nm.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: February 13, 2024
    Assignee: YOUNG OPTICS INC.
    Inventors: Hung-You Cheng, Yu-Hung Chou, Ching-Lung Lai, Yi-Hua Lin, Wei-Hao Huang
  • Publication number: 20230084002
    Abstract: A projection optical system with a concave reflector in the projection lens, comprising: an image source; a lens group; a reflector; an image and an aperture, the lens group and the reflector form multiple optical paths between the image and image source, each optical path has a chief ray and a marginal ray, the chief ray of one of the optical paths forms a chief ray of a paraxial image height at the part where image source be near to the optical axis, the chief ray of another one of the optical paths forms a marginal ray of an off-axis image height at the part where image source be far from the optical axis; wherein 2.2<F1/F2<3.0; 8<IMH/TR/Fno<19; 5<IMH*T1/T2<8. whereby the optimal optical performance of resolving power and optical path interference allowance will be achieved.
    Type: Application
    Filed: November 11, 2022
    Publication date: March 16, 2023
    Inventors: SHENG-CHE WU, YU-HUNG CHOU, WEI-HAO HUANG
  • Publication number: 20220382023
    Abstract: An optical lens system includes, in order from a magnified side to a minified side, a first lens group of positive refractive power and a second lens group of positive refractive power. The first lens group includes a first lens and a second lens, and the second lens group includes a third lens and a fourth lens. One of the third lens and the fourth lens includes one aspheric surface, and each of the lenses in the optical lens system is a singlet lens. The optical lens satisfies a condition of TE(?=400)>94%, where TE(?=400) denotes an overall transmittance of all of the lenses in the optical lens system measured at a wavelength of 400 nm.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Inventors: Hung-You CHENG, Yu-Hung CHOU, Ching-Lung LAI, Yi-Hua LIN, Wei-Hao HUANG
  • Patent number: 11448859
    Abstract: An optical lens system using ultraviolet for imaging includes, in order from a magnified side to a minified side, a first lens group of positive refractive power and a second lens group of positive refractive power. The second lens group includes at least one cemented lens and at least one aspheric lens. The optical lens system satisfies the condition of TE(?=400)>94%, where TE(?=400) denotes an overall transmittance of all of the lenses in the optical lens system measured at a wavelength of 400 nm and is equal to a product of respective internal transmittances of all of the lenses measured at a wavelength of 400 nm.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: September 20, 2022
    Assignee: YOUNG OPTICS INC.
    Inventors: Hung-You Cheng, Yu-Hung Chou, Ching-Lung Lai, Yi-Hua Lin, Wei-Hao Huang
  • Publication number: 20220171169
    Abstract: A projection optical system, comprising: an image source; a lens group; a reflector; an image and an aperture, the lens group and the reflector form multiple optical paths between the image and image source, each optical path has a chief ray and a marginal ray, the chief ray of one of the optical paths forms a chief ray of a paraxial image height at the part where image source be near to the optical axis, the chief ray of another one of the optical paths forms a marginal ray of an off-axis image height at the part where image source be far from the optical axis; whereby forming a first point and a second point, the first point located at the origin and the second point is located in the first quadrant, and forming a third point and a fourth point, the third point located at the fourth quadrant and the fourth point is located in the second quadrant.
    Type: Application
    Filed: November 30, 2020
    Publication date: June 2, 2022
    Inventors: SHENG-CHE WU, YU-HUNG CHOU, WEI-HAO HUANG
  • Patent number: 11314063
    Abstract: A zoom lens includes a first lens group with a negative refractive power, a second lens group with a positive refractive power, and an aperture stop disposed in and movable with the second lens group. Each of the first lens group and the second lens group moves individually. The zoom lens further includes a doublet lens disposed on a first side of the aperture stop and between the first lens group and the aperture stop, and at most two lenses including at least one aspheric lens are disposed on a second side of the aperture stop.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 26, 2022
    Assignee: YOUNG OPTICS INC.
    Inventors: Hung-You Cheng, Kuo-Chuan Wang, Yu-Hung Chou
  • Patent number: 11073683
    Abstract: A projection lens structure mainly includes a first group of lenses with a negative dioptric value, a second group of lenses with a positive dioptric value, a third group of lenses with a positive dioptric value and a fourth group of lenses with a negative dioptric value. The first group of lenses further includes at least a first lens and a second lens, of which the first lens ha a plastic aspheric lens in a meniscus shape with a focal length between ?25˜?80 mm. The second group of lenses further includes at least a third lens. The third group of lenses further includes at least a first doublet with a focal length between 25˜80 mm. The fourth group of length further includes at least a group of doublets, a fourth lens and a fifth lens.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: July 27, 2021
    Assignee: Sun Yang Optics Development Co., Ltd.
    Inventors: Sheng-Che Wu, Yu-Hung Chou, You-Da Chen
  • Publication number: 20210033828
    Abstract: A projection lens structure mainly includes a first group of lenses with a negative dioptric value, a second group of lenses with a positive dioptric value, a third group of lenses with a positive dioptric value and a fourth group of lenses with a negative dioptric value. The first group of lenses further includes at least a first lens and a second lens, of which the first lens ha a plastic aspheric lens in a meniscus shape with a focal length between ?25˜?80 mm. The second group of lenses further includes at least a third lens. The third group of lenses further includes at least a first doublet with a focal length between 25˜80 mm. The fourth group of length further includes at least a group of doublets, a fourth lens and a fifth lens.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Sheng-Che Wu, Yu-Hung Chou, You-Da Chen
  • Publication number: 20200355895
    Abstract: A zoom lens includes a first lens group with a negative refractive power, a second lens group with a positive refractive power, and an aperture stop disposed in and movable with the second lens group. Each of the first lens group and the second lens group moves individually. The zoom lens further includes a doublet lens disposed on a first side of the aperture stop and between the first lens group and the aperture stop, and at most two lenses including at least one aspheric lens are disposed on a second side of the aperture stop.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Hung-You CHENG, Kuo-Chuan WANG, Yu-Hung CHOU
  • Patent number: 10795137
    Abstract: An image-space telecentric lens includes, in order from a magnified side to a minified side, a first lens group of negative refractive power, an aperture stop, and a second lens group of positive refractive power. The first lens group has at least one aspheric surface, and the second lens group has at least one aspheric surface. The second lens group has a cemented lens of positive refractive power, and the cemented lens is nearest the aperture stop as compared with other lens in the second lens group. The image-space telecentric lens satisfies the condition: TT<100 mm, where TT denotes a length measured along an optical axis and between two outermost opposite lens surfaces of the image-space telecentric lens.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: October 6, 2020
    Assignee: YOUNG OPTICS INC.
    Inventors: Hung-You Cheng, Kai-Yun Chen, Yu-Hung Chou
  • Publication number: 20200218038
    Abstract: An optical lens system using ultraviolet for imaging includes, in order from a magnified side to a minified side, a first lens group of positive refractive power and a second lens group of positive refractive power. The second lens group includes at least one cemented lens and at least one aspheric lens. The optical lens system satisfies the condition of TE(?=400)>94%, where TE(?=400) denotes an overall transmittance of all of the lenses in the optical lens system measured at a wavelength of 400 nm and is equal to a product of respective internal transmittances of all of the lenses measured at a wavelength of 400 nm.
    Type: Application
    Filed: March 17, 2020
    Publication date: July 9, 2020
    Inventors: Hung-You CHENG, Yu-Hung CHOU, Ching-Lung LAI, Yi-Hua LIN, Wei-Hao HUANG
  • Patent number: 10656397
    Abstract: An optical lens system includes, in order from a magnified side to a minified side, a first lens group and a second lens group. The first lens group of negative refractive power has at least one aspheric surface, and the second lens group of positive refractive power has at least one aspheric surface. Each of the lenses in the optical lens system is a singlet lens, and the condition: TE(?=365)>70% is satisfied, where TE(?=365) denotes an overall transmittance of all of the lenses in the optical lens system measured at a wavelength of 365 nm.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: May 19, 2020
    Assignee: YOUNG OPTICS INC.
    Inventors: Hung-You Cheng, Yu-Hung Chou, Ching-Lung Lai, Yi-Hua Lin, Wei-Hao Huang
  • Patent number: 10606154
    Abstract: A projection lens structure includes a first group of lens, an aperture stop and a second group of lend. The aperture stop is arranged at a rear of the first group of lens to form a long-focus lens with a focal length between 30-80 mm and the second group of lens is arranged at a rear of the aperture stop to form a short-focus lens with a focal length between 20-30 mm. With the long-focus lens and the short-focus lens operated correspondingly, the structure of the projection lens is simple and the manufacturing cost is low without affecting the quality of produced images.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: March 31, 2020
    Assignee: Sun Yang Optics Development Co., Ltd.
    Inventors: Sheng-Che Wu, Yu-Hung Chou, You-Da Chen
  • Patent number: 10606046
    Abstract: A zoom lens arranged along an optical axis includes a first lens group and a second lens group. The second lens group has at least one aspheric lens. The first lens group moves toward an image side and the second lens group moves away from the image side along the optical axis during zooming. The first lens group is moved for focusing, and the second lens group is moved for zooming.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: March 31, 2020
    Assignee: Young Optics Inc.
    Inventors: Kuo-Chuan Wang, Bing-Ju Chiang, Pin-Hsuan Hsieh, Kai-Yun Chen, Yu-Hung Chou
  • Publication number: 20200073216
    Abstract: A projection lens structure includes a first group of lens, an aperture stop and a second group of lend. The aperture stop is arranged at a rear of the first group of lens to form a long-focus lens with a focal length between 30-80 mm and the second group of lens is arranged at a rear of the aperture stop to form a short-focus lens with a focal length between 20-30 mm. With the long-focus lens and the short-focus lens operated correspondingly, the structure of the projection lens is simple and the manufacturing cost is low without affecting the quality of produced images.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 5, 2020
    Inventors: SHENG-CHE WU, YU-HUNG CHOU, YOU-DA CHEN