Patents by Inventor Yu-Li Lin
Yu-Li Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250079179Abstract: A manufacturing method of a semiconductor device includes depositing a first bilayer structure over a substrate, in which the first bilayer structure includes a silicon oxide layer and a silicon nitride layer over the silicon nitride layer; forming a first carbonaceous hard mask on the first bilayer structure; forming a second bilayer structure on the first carbonaceous hard mask; forming a mask stack of alternating anti-reflecting coating (ARC) hard masks and second carbonaceous hard masks on the second bilayer structure; and coating a photoresist on the mask stack.Type: ApplicationFiled: September 3, 2023Publication date: March 6, 2025Inventor: Yu Li LIN
-
Patent number: 12243929Abstract: A dummy gate structure may be formed for a semiconductor device. The dummy gate structure may be formed from an amorphous polysilicon layer. The amorphous polysilicon layer may be deposited in a blanket deposition operation. An annealing operation is performed for the semiconductor device to remove voids, seams, and/or other defects from the amorphous polysilicon layer. The annealing operation may cause the amorphous polysilicon layer to crystallize, thereby resulting in the amorphous polysilicon layer transitioning into a crystallized polysilicon layer. A dual radio frequency (RF) source etch technique may be performed to increase the directionality of ions and radicals in a plasma that is used to etch the crystallized polysilicon layer to form the dummy gate structure. The increased directionality of the ions increases the effectiveness of the ions in etching through the different crystal grain boundaries which increases the etch rate uniformity across the crystallized polysilicon layer.Type: GrantFiled: April 28, 2022Date of Patent: March 4, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yan-Ting Shen, Yu-Li Lin, Jui Fu Hsieh, Chih-Teng Liao
-
Publication number: 20240371650Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming a gate layer over the fin; and patterning the gate layer in a plasma etching tool using a plasma etching process to form a gate over the fin, where patterning the gate layer includes: turning on and off a top radio frequency (RF) source of the plasma etching tool alternately during the plasma etching process; and turning on and off a bottom RF source of the plasma etching tool alternately during the plasma etching process, where there is a timing offset between first time instants when the top RF source is turned on and respective second time instants when the bottom RF source is turned on.Type: ApplicationFiled: July 17, 2024Publication date: November 7, 2024Inventors: Yu-Li Lin, Chih-Teng Liao, Jui Fu Hsieh, Chih Hsuan Cheng, Tzu-Chan Weng
-
Patent number: 12125707Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming a gate layer over the fin; and patterning the gate layer in a plasma etching tool using a plasma etching process to form a gate over the fin, where patterning the gate layer includes: turning on and off a top radio frequency (RF) source of the plasma etching tool alternately during the plasma etching process; and turning on and off a bottom RF source of the plasma etching tool alternately during the plasma etching process, where there is a timing offset between first time instants when the top RF source is turned on and respective second time instants when the bottom RF source is turned on.Type: GrantFiled: July 25, 2022Date of Patent: October 22, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Yu-Li Lin, Chih-Teng Liao, Jui Fu Hsieh, Chih Hsuan Cheng, Tzu-Chan Weng
-
Publication number: 20240297253Abstract: A semiconductor device includes a fin structure protruding from an isolation insulating layer disposed over a substrate and having a channel region, a source/drain region disposed over the substrate, a gate dielectric layer disposed on the channel region, and a gate electrode layer disposed on the gate dielectric layer. The gate electrode includes a lower portion below a level of a top of the channel region and above an upper surface of the isolation insulating layer, and a width of the lower portion is not constant.Type: ApplicationFiled: May 7, 2024Publication date: September 5, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yan-Ting SHEN, Chia-Chi YU, Chih-Teng LIAO, Yu-Li LIN, Chih Hsuan CHENG, Tzu-Chan WENG
-
Patent number: 12015085Abstract: A semiconductor device includes a fin structure protruding from an isolation insulating layer disposed over a substrate and having a channel region, a source/drain region disposed over the substrate, a gate dielectric layer disposed on the channel region, and a gate electrode layer disposed on the gate dielectric layer. The gate electrode includes a lower portion below a level of a top of the channel region and above an upper surface of the isolation insulating layer, and a width of the lower portion is not constant.Type: GrantFiled: July 26, 2022Date of Patent: June 18, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yan-Ting Shen, Chia-Chi Yu, Chih-Teng Liao, Yu-Li Lin, Chih Hsuan Cheng, Tzu-Chan Weng
-
Publication number: 20230411127Abstract: Embodiments are directed to a method of operating a plasma processing system by retrofitting one or more components thereof. The method includes removing a holder from a gas supply mechanism of the plasma processing system. The holder includes a gas injector that is configured to provide gas received from a gas source to a plasma chamber of the plasma processing system. The method further includes reducing a size of a guide pin of the holder, installing the holder including the guide pin having the reduced size in the gas supply mechanism, and rotating the gas injector to change a flow of gas through the gas injector.Type: ApplicationFiled: June 16, 2022Publication date: December 21, 2023Inventors: Tai-Jung CHUANG, Chiao-Yuan HSIAO, Yung-Chan CHEN, Wei Kang CHUNG, Yu-Li LIN, Jui Fu HSIEH, Chih-Teng LIAO
-
Publication number: 20230387270Abstract: In a method, a first dielectric layer is formed over semiconductor fins, a second dielectric layer is formed over the first dielectric layer, the second dielectric layer is recessed below a top of each of the semiconductor fins, a third dielectric layer is formed over the recessed second dielectric layer, and the third dielectric layer is recessed below the top of the semiconductor fin, thereby forming a wall fin. The wall fin includes the recessed third dielectric layer and the recessed second dielectric layer disposed over the recessed third dielectric layer. The first dielectric layer is recessed below a top of the wall fin, a fin liner layer is formed, the fin liner layer is recessed and the semiconductor fins are recessed, and source/drain epitaxial layers are formed over the recessed semiconductor fins, respectively. The source/drain epitaxial layers are separated by the wall fin from each other.Type: ApplicationFiled: August 9, 2023Publication date: November 30, 2023Inventors: Chia-Chi YU, Jui Fu HSIEH, Yu-Li LIN, Chih-Teng LIAO, Yi-Jen CHEN
-
Patent number: 11830937Abstract: In a method, a first dielectric layer is formed over semiconductor fins, a second dielectric layer is formed over the first dielectric layer, the second dielectric layer is recessed below a top of each of the semiconductor fins, a third dielectric layer is formed over the recessed second dielectric layer, and the third dielectric layer is recessed below the top of the semiconductor fin, thereby forming a wall fin. The wall fin includes the recessed third dielectric layer and the recessed second dielectric layer disposed over the recessed third dielectric layer. The first dielectric layer is recessed below a top of the wall fin, a fin liner layer is formed, the fin liner layer is recessed and the semiconductor fins are recessed, and source/drain epitaxial layers are formed over the recessed semiconductor fins, respectively. The source/drain epitaxial layers are separated by the wall fin from each other.Type: GrantFiled: March 21, 2022Date of Patent: November 28, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chia-Chi Yu, Jui Fu Hsieh, Yu-Li Lin, Chih-Teng Liao, Yi-Jen Chen
-
Publication number: 20230352559Abstract: A dummy gate structure may be formed for a semiconductor device. The dummy gate structure may be formed from an amorphous polysilicon layer. The amorphous polysilicon layer may be deposited in a blanket deposition operation. An annealing operation is performed for the semiconductor device to remove voids, seams, and/or other defects from the amorphous polysilicon layer. The annealing operation may cause the amorphous polysilicon layer to crystallize, thereby resulting in the amorphous polysilicon layer transitioning into a crystallized polysilicon layer. A dual radio frequency (RF) source etch technique may be performed to increase the directionality of ions and radicals in a plasma that is used to etch the crystallized polysilicon layer to form the dummy gate structure. The increased directionality of the ions increases the effectiveness of the ions in etching through the different crystal grain boundaries which increases the etch rate uniformity across the crystallized polysilicon layer.Type: ApplicationFiled: April 28, 2022Publication date: November 2, 2023Inventors: Yan-Ting SHEN, Yu-Li LIN, Jui Fu HSIEH, Chih-Teng LIAO
-
Publication number: 20230317827Abstract: Some embodiments provide a process of tunning sidewall profiles of gate openings prior to filling a replacement gate electrode layer therein to improve etching rate uniformity and stability during a subsequent gate electrode etch back process. Particularly, the profile sacrificial gate electrode is adjusted to be more straight profile rather than a bowl type profile, which reduces the seam void created in the replacement gate electrode during the replacement gate process. In some embodiments, tuning the profile of gate opening further includes performing a pullback etching process of the sidewall spacers prior to depositing gate dielectric layer and work function metal layer to achieve a wider opening for metal gate filling in the replacement gate process.Type: ApplicationFiled: August 18, 2022Publication date: October 5, 2023Inventors: Chi-Ming HUANG, Chun-I LIU, Yu-Li LIN, Chih-Lun LU, Chen-Wei PAN, Chih-Teng LIAO
-
Publication number: 20220406913Abstract: Embodiments include methods and devices which utilize dummy gate profiling to provide a profile of a dummy gate which has narrowing in the dummy gate. The narrowing causes a neck in the dummy gate. When the dummy gate is replaced in a gate replacement process, the necking provides control of an etch-back process. Space is provided between the replacement gate and a subsequently formed self-aligned contact.Type: ApplicationFiled: May 25, 2022Publication date: December 22, 2022Inventors: Hsiu-Ling Chen, Chih-Teng Liao, Jen-Chih Hsueh, Chen-Wei Pan, Yu-Li Lin
-
Patent number: 11532481Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming a gate layer over the fin; and patterning the gate layer in a plasma etching tool using a plasma etching process to form a gate over the fin, where patterning the gate layer includes: turning on and off a top radio frequency (RF) source of the plasma etching tool alternately during the plasma etching process; and turning on and off a bottom RF source of the plasma etching tool alternately during the plasma etching process, where there is a timing offset between first time instants when the top RF source is turned on and respective second time instants when the bottom RF source is turned on.Type: GrantFiled: June 30, 2020Date of Patent: December 20, 2022Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yu-Li Lin, Chih-Teng Liao, Jui Fu Hsieh, Chih Hsuan Cheng, Tzu-Chan Weng
-
Publication number: 20220367196Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming a gate layer over the fin; and patterning the gate layer in a plasma etching tool using a plasma etching process to form a gate over the fin, where patterning the gate layer includes: turning on and off a top radio frequency (RF) source of the plasma etching tool alternately during the plasma etching process; and turning on and off a bottom RF source of the plasma etching tool alternately during the plasma etching process, where there is a timing offset between first time instants when the top RF source is turned on and respective second time instants when the bottom RF source is turned on.Type: ApplicationFiled: July 25, 2022Publication date: November 17, 2022Inventors: Yu-Li Lin, Chih-Teng Liao, Jui Fu Hsieh, Chih Hsuan Cheng, Tzu-Chan Weng
-
Publication number: 20220359746Abstract: A semiconductor device includes a fin structure protruding from an isolation insulating layer disposed over a substrate and having a channel region, a source/drain region disposed over the substrate, a gate dielectric layer disposed on the channel region, and a gate electrode layer disposed on the gate dielectric layer. The gate electrode includes a lower portion below a level of a top of the channel region and above an upper surface of the isolation insulating layer, and a width of the lower portion is not constant.Type: ApplicationFiled: July 26, 2022Publication date: November 10, 2022Inventors: Yan-Ting SHEN, Chia-Chi YU, Chih-Teng LIAO, Yu-Li LIN, Chih Hsuan CHENG, Tzu-Chan WENG
-
Patent number: 11430893Abstract: A semiconductor device includes a fin structure protruding from an isolation insulating layer disposed over a substrate and having a channel region, a source/drain region disposed over the substrate, a gate dielectric layer disposed on the channel region, and a gate electrode layer disposed on the gate dielectric layer. The gate electrode includes a lower portion below a level of a top of the channel region and above an upper surface of the isolation insulating layer, and a width of the lower portion is not constant.Type: GrantFiled: July 10, 2020Date of Patent: August 30, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Yan-Ting Shen, Chia-Chi Yu, Chih-Teng Liao, Yu-Li Lin, Chih Hsuan Cheng, Tzu-Chan Weng
-
Publication number: 20220216324Abstract: In a method, a first dielectric layer is formed over semiconductor fins, a second dielectric layer is formed over the first dielectric layer, the second dielectric layer is recessed below a top of each of the semiconductor fins, a third dielectric layer is formed over the recessed second dielectric layer, and the third dielectric layer is recessed below the top of the semiconductor fin, thereby forming a wall fin. The wall fin includes the recessed third dielectric layer and the recessed second dielectric layer disposed over the recessed third dielectric layer. The first dielectric layer is recessed below a top of the wall fin, a fin liner layer is formed, the fin liner layer is recessed and the semiconductor fins are recessed, and source/drain epitaxial layers are formed over the recessed semiconductor fins, respectively. The source/drain epitaxial layers are separated by the wall fin from each other.Type: ApplicationFiled: March 21, 2022Publication date: July 7, 2022Inventors: Chia-Chi YU, Jui Fu HSIEH, Yu-Li LIN, Chih-Teng LIAO, Yi-Jen CHEN
-
Patent number: 11282944Abstract: In a method, a first dielectric layer is formed over semiconductor fins, a second dielectric layer is formed over the first dielectric layer, the second dielectric layer is recessed below a top of each of the semiconductor fins, a third dielectric layer is formed over the recessed second dielectric layer, and the third dielectric layer is recessed below the top of the semiconductor fin, thereby forming a wall fin. The wall fin includes the recessed third dielectric layer and the recessed second dielectric layer disposed over the recessed third dielectric layer. The first dielectric layer is recessed below a top of the wall fin, a fin liner layer is formed, the fin liner layer is recessed and the semiconductor fins are recessed, and source/drain epitaxial layers are formed over the recessed semiconductor fins, respectively. The source/drain epitaxial layers are separated by the wall fin from each other.Type: GrantFiled: July 31, 2020Date of Patent: March 22, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chia-Chi Yu, Jui Fu Hseih, Yu-Li Lin, Chih-Teng Liao, Yi-Jen Chen
-
Publication number: 20220013662Abstract: A semiconductor device includes a fin structure protruding from an isolation insulating layer disposed over a substrate and having a channel region, a source/drain region disposed over the substrate, a gate dielectric layer disposed on the channel region, and a gate electrode layer disposed on the gate dielectric layer. The gate electrode includes a lower portion below a level of a top of the channel region and above an upper surface of the isolation insulating layer, and a width of the lower portion is not constant.Type: ApplicationFiled: July 10, 2020Publication date: January 13, 2022Inventors: Yan-Ting SHEN, Chia-Chi YU, Chih-Teng LIAO, Yu-Li LIN, Chih Hsuan CHENG, Tzu-Chan WENG
-
Publication number: 20210407812Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming a gate layer over the fin; and patterning the gate layer in a plasma etching tool using a plasma etching process to form a gate over the fin, where patterning the gate layer includes: turning on and off a top radio frequency (RF) source of the plasma etching tool alternately during the plasma etching process; and turning on and off a bottom RF source of the plasma etching tool alternately during the plasma etching process, where there is a timing offset between first time instants when the top RF source is turned on and respective second time instants when the bottom RF source is turned on.Type: ApplicationFiled: June 30, 2020Publication date: December 30, 2021Inventors: Yu-Li Lin, Chih-Teng Liao, Jui Fu Hsieh, Chih Hsuan Cheng, Tzu-Chan Weng