Patents by Inventor Yu-Lin Jiang

Yu-Lin Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11841398
    Abstract: The invention relates to a method, an apparatus and a non-transitory computer-readable storage medium for debugging a solid-state disk (SSD) device. The method is performed by a processing unit of a single-board personal computer (PC) when loading and executing a function of a runtime library, to include: receiving a request to drive a General-Purpose Input/Output (GPIO) interface (I/F), which includes a parameter required for completing a Joint Test Action Group (JTAG) command; issuing a first hardware instruction to the GPIO I/F to set a register corresponding to a GPIO test data input (TDI) pin according to the parameter carried in the request for emulating to issue the JTAG command to a solid-state disk (SSD) device, wherein the single-board PC is coupled to the SSD device through the GPIO I/F; issuing a second hardware instruction to the GPIO I/F to read a value of the register corresponding to the GPIO TDI pin; and replying with a completion message in response to the request.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: December 12, 2023
    Assignee: Silicon Motion, Inc.
    Inventors: Yu-Lin Jiang, Kun-Lin Ho
  • Publication number: 20230101743
    Abstract: The present invention relates to compounds of formula (I): including any stereochemically isomeric form thereof, or pharmaceutically acceptable salts thereof, for the treatment of, for example, hypercholesterolemia.
    Type: Application
    Filed: January 6, 2021
    Publication date: March 30, 2023
    Inventors: Stephen DUNCAN, Juitung LIU, Patrick M. WOSTER, Yuri PETERSON, Steven HOLSHOUSER, Yu-Lin JIANG
  • Publication number: 20220413047
    Abstract: The invention relates to a method, an apparatus and a non-transitory computer-readable storage medium for debugging a solid-state disk (SSD) device. The method is performed by a processing unit of a single-board personal computer (PC) when loading and executing a function of a runtime library, to include: receiving a request to drive a General-Purpose Input/Output (GPIO) interface (I/F), which includes a parameter required for completing a Joint Test Action Group (JTAG) command; issuing a first hardware instruction to the GPIO I/F to set a register corresponding to a GPIO test data input (TDI) pin according to the parameter carried in the request for emulating to issue the JTAG command to a solid-state disk (SSD) device, wherein the single-board PC is coupled to the SSD device through the GPIO I/F; issuing a second hardware instruction to the GPIO I/F to read a value of the register corresponding to the GPIO TDI pin; and replying with a completion message in response to the request.
    Type: Application
    Filed: April 26, 2022
    Publication date: December 29, 2022
    Applicant: Silicon Motion, Inc.
    Inventors: Yu-Lin JIANG, Kun-Lin HO
  • Patent number: 10458988
    Abstract: Provided herein are luminescent probes of formula I: and complexes thereof for the detection of cancer cells.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: October 29, 2019
    Assignee: MUSC Foundation for Research Development
    Inventors: Ann-Marie Broome, Yu-Lin Jiang
  • Publication number: 20180252718
    Abstract: Provided herein are luminescent probes of formula I: and complexes thereof for the detection of cancer cells.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 6, 2018
    Inventors: Ann-Marie Broome, Yu-Lin Jiang
  • Patent number: 6835228
    Abstract: A process of recovering metals from waste lithium ion/Ni—H/Ni—Cd batteries, wherein the waste batteries are calcined and sieved to generate an ash containing metals and metal oxides. The process includes subjecting the ash to a first dissolution etching treatment, a first filtration treatment to obtain a filtrate containing Cd ions which are crystallized as cadmium sulfate, a second dissolution etching treatment for the filtered solid, and a second filtration treatment to obtain a second filtrate. Fe+3, Al+3 and rare earth metal ions in the second filtrate are precipitated as hydroxides by adding a base to the second filtrate. The remaining solution was extracted and counter-extracted to obtain aqueous solutions of Co and Ni ions, which were subjected separately to a electrolysis to deposit Co and Ni metals. Li ions in the residue solution from the electrolysis of Ni was precipitated as carbonate by adding a soluble carbonate salt.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: December 28, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Jiunn-Ren Lin, I-Long Chang, Yu-Lin Jiang, Jer-Yuan Shiu
  • Patent number: 6764584
    Abstract: Two concentration techniques, adsorption and electrodialysis, are combined to enrich lithium ions in brine from a level of several ppm to about 1.5%. At beginning brine is subjected to an adsorption, so that Li content is increased to 1200-1500 ppm, followed by two stages of electrodialysis in series to increase Li ions to about 1.5%. Li depleted solution from the second stage of electrodialysis having a Li content of 1200-1500 ppm is recycled to the first stage of electrodialysis as a feed. Li depleted water from the first stage of electrodialysis is subjected to a residue recovery electrodialysis to form a Li enriched solution of 1200-1500 ppm, which is also recycled to the first stage of electrodialysis as a feed. Li depleted solution from the residue recovery electrodialysis is recycled as a feed of the adsorption, so as to sufficiently recover Li ions from brine.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: July 20, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: I-Long Chang, Yu-Lin Jiang, Jer-Yuan Shiu, Jiunn-Ren Lin
  • Publication number: 20040074774
    Abstract: Two concentration techniques, adsorption and electrodialysis, are combined to enrich lithium ions in brine from a level of several ppm to about 1.5%. At beginning brine is subjected to an adsorption, so that Li content is increased to 1200-1500 ppm, followed by two stages of electrodialysis in series to increase Li ions to about 1.5%. Li depleted solution from the second stage of electrodialysis having a Li content of 1200-1500 ppm is recycled to the first stage of electrodialysis as a feed. Li depleted water from the first stage of electrodialysis is subjected to a residue recovery electrodialysis to form a Li enriched solution of 1200-1500 ppm, which is also recycled to the first stage of electrodialysis as a feed. Li depleted solution from the residue recovery electrodialysis is recycled as a feed of the adsorption, so as to sufficiently recover Li ions from brine.
    Type: Application
    Filed: October 22, 2002
    Publication date: April 22, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: I-Long Chang, Yu-Lin Jiang, Jer-Yuan Shiu, Jiunn-Ren Lin