Patents by Inventor Yu-Lung Hsieh

Yu-Lung Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11175418
    Abstract: A non-transitory computer-readable medium storing instructions readable and executable by a workstation (18) including at least one electronic processor (20) to perform a quality control (QC) method (100). The method includes: receiving a current QC data set acquired by a pixelated detector (14) and one or more prior QC data sets acquired by the pixelated detector; determining stability levels of detector pixels (16) of the pixelated detector over time from the current QC data set and the one or more prior QC data sets; labeling a detector pixel of the pixelated detector as dead when the stability level determined for the detector pixel is outside of a stability threshold range; and displaying, on a display device (24) operatively connected with the workstation, an identification (28) of the detector pixels labelled as dead.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: November 16, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Chuanyong Bai, Andriy Andreyev, Shushen Lin, Bin Zhang, Michael Allen Miller, Xiyun Song, Jinghan Ye, Shekhar Dwivedi, Zhiqiang Hu, Yu-Lung Hsieh, Ilya Brodskiy, Thomas Christopher Bulgrin, Yang-Ming Zhu, Douglas B. McKnight
  • Publication number: 20210305212
    Abstract: A manufacturing method of a semiconductor package includes the following steps. At least one lower semiconductor device is provided. A plurality of conductive pillars are formed on the at least one lower semiconductor device. A dummy die is disposed on a side of the at least one lower semiconductor device. An upper semiconductor device is disposed on the at least one lower semiconductor device and the dummy die, wherein the upper semiconductor device reveals a portion of the at least one lower semiconductor device where the plurality of conductive pillars are disposed. The at least one lower semiconductor device, the dummy die, the upper semiconductor device, and the plurality of conductive pillars are encapsulated in an encapsulating material. A redistribution structure is formed over the upper semiconductor device and the plurality of conductive pillars.
    Type: Application
    Filed: May 10, 2021
    Publication date: September 30, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Kang Hsieh, Hung-Yi Kuo, Hao-Yi Tsai, Kuo-Lung Pan, Ting Hao Kuo, Yu-Chia Lai, Mao-Yen Chang, Po-Yuan Teng, Shu-Rong Chun
  • Patent number: 11009615
    Abstract: A time of flight (TOF) positron emission tomography (PET) image (38) is generated from TOF PET imaging data (10) acquired of a subject using a TOF PET imaging data acquisition device (6). Iterative image reconstruction (30) of the TOF PET imaging data is performed with TOF localization of counts along respective lines of response (LORs) to iteratively update a reconstructed image (32). Values for at least one regularization or filtering parameter are assigned to the TOF PET imaging data or to voxels of the reconstructed image based on an estimated TOF localization resolution for the TOF PET imaging data or voxels. Regularization (34) or filtering (36) of the reconstructed image is performed using the assigned values for the at least one regularization or filtering parameter. In some embodiments, the varying TOF localization resolution for the TOF PET imaging data or voxels is estimated based on related acquisition characteristics such as count rates or operating temperature of the detectors.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: May 18, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Chuanyong Bai, Andriy Andreyev, Andre Frank Salomon, Andreas Goedicke, Jinghan Ye, Yu-Lung Hsieh, Bin Zhang, Xiyun Song, Manoj Narayanan, Zhiqiang Hu
  • Patent number: 10925554
    Abstract: A radioemission scanner (12) is operated to acquire tomographic radioemission data of a radiopharmaceutical in a subject in an imaging field of view (FOV). An imaging system is operated to acquire extension imaging data of the subject in an extended FOV disposed outside of and adjacent the imaging FOV along an axial direction (18). A distribution of the radiopharmaceutical in the subject in the extended FOV is estimated based on the extension imaging data, and further based on a database (32) of reference subjects. The tomographic radioemission data are reconstructed to generate a reconstructed image (26) of the subject in the imaging FOV. The reconstruction includes correcting the reconstructed image for scatter from the extended FOV into the imaging FOV based on the estimated distribution of the radiopharmaceutical in the subject in the extended FOV.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: February 23, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Andriy Andreyev, Manoj Narayanan, Bin Zhang, Zhiqiang Hu, Yu-Lung Hsieh, Xiyun Song, Jinghan Ye
  • Publication number: 20200334870
    Abstract: A non-transitory computer-readable medium stores instructions readable and executable by a workstation (18) including at least one electronic processor (20) to perform an image reconstruction method (100). The method includes: determining a weighting parameter (13) of an edge-preserving regularization or penalty of a regularized image reconstruction of an image acquisition device (12) for an imaging data set obtained by the image acquisition device; determining an edge sensitivity parameter (?) of the edge-preserving algorithm for the imaging data set obtained by the image acquisition device; and reconstructing the imaging data set obtained by the image acquisition device to generate a reconstructed image by applying the regularized image reconstruction including the edge-preserving regularization or penalty with the determined weighting and edge sensitivity parameters to the imaging data set obtained by the image acquisition device.
    Type: Application
    Filed: January 2, 2019
    Publication date: October 22, 2020
    Inventors: Chuanyong BAI, Andriy ANDREYEV, Bin ZHANG, James GURIAN, Zhiqiang HU, Yu-Lung HSIEH, Shekhar DWIVEDI, Jinghan YE, Xiyun SONG, Michael Allen MILLER
  • Publication number: 20200301032
    Abstract: A non-transitory computer-readable medium storing instructions readable and executable by a workstation (18) including at least one electronic processor (20) to perform a quality control (QC) method (100). The method includes: receiving a current QC data set acquired by a pixelated detector (14) and one or more prior QC data sets acquired by the pixelated detector; determining stability levels of detector pixels (16) of the pixelated detector over time from the current QC data set and the one or more prior QC data sets; labeling a detector pixel of the pixelated detector as dead when the stability level determined for the detector pixel is outside of a stability threshold range; and displaying, on a display device (24) operatively connected with the workstation, an identification (28) of the detector pixels labelled as dead.
    Type: Application
    Filed: September 12, 2018
    Publication date: September 24, 2020
    Inventors: CHUANYONG BAI, ANDRIY ANDREYEV, SHUSHEN LIN, BIN ZHANG, MICHAEL ALLEN MILLER, XIYUN SONG, JINGHAN YE, DWIVEDI SHEKHAR, ZHIQIANG HU, YU-LUNG HSIEH, ILYA BRODSKIY, THOMAS CHRISTOPHER BULGRIN, YANG-MING ZHU, DOUGLAS B. MCKNIGHT
  • Publication number: 20190339403
    Abstract: A time of flight (TOF) positron emission tomography (PET) image (38) is generated from TOF PET imaging data (10) acquired of a subject using a TOF PET imaging data acquisition device (6). Iterative image reconstruction (30) of the TOF PET imaging data is performed with TOF localization of counts along respective lines of response (LORs) to iteratively update a reconstructed image (32). Values for at least one regularization or filtering parameter are assigned to the TOF PET imaging data or to voxels of the reconstructed image based on an estimated TOF localization resolution for the TOF PET imaging data or voxels. Regularization (34) or filtering (36) of the reconstructed image is performed using the assigned values for the at least one regularization or filtering parameter. In some embodiments, the varying TOF localization resolution for the TOF PET imaging data or voxels is estimated based on related N acquisition characteristics such as count rates or operating temperature of the detectors.
    Type: Application
    Filed: December 18, 2017
    Publication date: November 7, 2019
    Inventors: Chuanyong BAI, Andriy ANDREYEV, Andre Frank SALOMON, Andreas GOEDICKE, Jinghan YE, Yu-Lung HSIEH, Bin ZHANG, Xiyun SONG, Manoj NARAYANAN, Zhiqiang HU
  • Publication number: 20170319154
    Abstract: A radioemission scanner (12) is operated to acquire tomographic radioemission data of a radiopharmaceutical in a subject in an imaging field of view (FOV). An imaging system is operated to acquire extension imaging data of the subject in an extended FOV disposed outside of and adjacent the imaging FOV along an axial direction (18). A distribution of the radiopharmaceutical in the subject in the extended FOV is estimated based on the extension imaging data, and further based on a database (32) of reference subjects. The tomographic radioemission data are reconstructed to generate a reconstructed image (26) of the subject in the imaging FOV. The reconstruction includes correcting the reconstructed image for scatter from the extended FOV into the imaging FOV based on the estimated distribution of the radiopharmaceutical in the subject in the extended FOV.
    Type: Application
    Filed: December 3, 2015
    Publication date: November 9, 2017
    Inventors: Andriy ANDREYEV, Manoj NARAYANAN, Bin ZHANG, Zhiqiang HU, Yu-Lung HSIEH, Xiyun SONG, Jinghan YE
  • Publication number: 20150317441
    Abstract: A nuclear medicine scanner system (1) includes an intelligent scheduler (2) which schedules a plurality of patients, each for an ordered nuclear medicine scanning procedure with a nuclear medicine scanning device (4) based on data mined from prior patients with like scanning procedures and in a time window which minimizes the patient dose.
    Type: Application
    Filed: December 2, 2013
    Publication date: November 5, 2015
    Inventors: Benjamin LORMAN, Yu-Lung HSIEH, Varun VERMA, Chi-Hua TUNG, Changhong DAI
  • Publication number: 20030126251
    Abstract: An automatic network monitor system is proposed, including a management center and a database system. The management center is at least provided with a host that is installed with management software, allowing the management center to be connected to at least an apparatus via a network. The management system is capable of automatically reading data from the apparatus periodically, and the read data are stored in the database system. By assessing the data with corresponding management rules defined in the management software, the management center is adapted to send a warming signal or to perform a maintenance control process for managing the apparatus in real time. The data stored in the database system can be utilized as reference for subsequent inquiry, statistics, analysis and maintenance.
    Type: Application
    Filed: May 23, 2002
    Publication date: July 3, 2003
    Applicant: Inventec Corporation
    Inventors: Ming-Huang Chen, Sheng-Chang Chang, Yu-Lung Hsieh
  • Patent number: 5481115
    Abstract: A SPECT camera (A) includes a plurality of detector heads (12a, 12b, 12c) which rotate around an examination region (10). A reconstruction processor (50) reconstructs output projection data from the detector heads into a three-dimensional image representation which is stored in an image memory (62). Selected data from the image memory (62) is converted to a human-readable display on a video monitor (66). To adjust automatically for detector head misalignment, a calibration phantom (B) which has two orthogonal lines of scintillators (20.sub.1, 20.sub.2, 20.sub.3, 20.sub.4, 20.sub.5) arranged orthogonal to each other with a common scintillator in both lines is positioned in the examination region. As the detector heads rotate around the phantom, a misalignment parameter generator (40) generates the displacement distance of the actual rotation from the theoretical rotation axis (.zeta.
    Type: Grant
    Filed: December 20, 1993
    Date of Patent: January 2, 1996
    Assignee: University of Utah, The
    Inventors: Yu-Lung Hsieh, Gengsheng L. Zeng, Grant T. Gullberg