Patents by Inventor Yu-Min Peng

Yu-Min Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210358823
    Abstract: A semiconductor package structure and a method for manufacturing a semiconductor package structure are provided. The semiconductor package structure includes a semiconductor package structure includes a semiconductor die and a light absorbing layer. The semiconductor die has a first surface, a second surface and a third surface. An active layer of the semiconductor die is adjacent to the first surface. The second surface is opposite to the first surface. The third surface extends from the first surface to the second surface. The light absorbing layer covers the second surface and the third surface of the semiconductor die. The semiconductor die has a thickness defined from the first surface to the second surface, and the thickness of the semiconductor die is less than or equal to about 300 micrometers (?m).
    Type: Application
    Filed: May 18, 2020
    Publication date: November 18, 2021
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chi Sheng TSENG, Lu-Ming LAI, Yu-Che HUANG, Shih-Chieh TANG, Yu-Min PENG, Hui-Chung LIU
  • Patent number: 10790323
    Abstract: A semiconductor device package includes a semiconductor device, an optical conductive pillar, a first encapsulant and a second encapsulant. The semiconductor device includes a pixel. The optical conductive pillar is disposed on the pixel. The first encapsulant has a first thickness and encapsulates the optical conductive pillar. The second encapsulant has a second thickness different from the first thickness.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: September 29, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: Yu-Min Peng
  • Patent number: 10782184
    Abstract: The present disclosure relates to an optical device. The optical device comprises an electronic component, a plurality of light conducting pillars and an opaque layer. The electronic component includes a plurality of pixels. Each of the light conducting pillars is disposed over a corresponding pixel of the plurality of pixels of the electronic component. The opaque layer covers a lateral surface of each of the light conducting pillars.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: September 22, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Yu-Min Peng, Ching-Han Huang, Lu-Ming Lai
  • Publication number: 20190267417
    Abstract: A semiconductor device package includes a semiconductor device, an optical conductive pillar, a first encapsulant and a second encapsulant. The semiconductor device includes a pixel. The optical conductive pillar is disposed on the pixel. The first encapsulant has a first thickness and encapsulates the optical conductive pillar. The second encapsulant has a second thickness different from the first thickness.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 29, 2019
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventor: Yu-Min PENG
  • Publication number: 20180066982
    Abstract: The present disclosure relates to an optical device. The optical device comprises an electronic component, a plurality of light conducting pillars and an opaque layer. The electronic component includes a plurality of pixels. Each of the light conducting pillars is disposed over a corresponding pixel of the plurality of pixels of the electronic component. The opaque layer covers a lateral surface of each of the light conducting pillars.
    Type: Application
    Filed: August 25, 2017
    Publication date: March 8, 2018
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Yu-Min PENG, Ching-Han HUANG, Lu-Ming LAI
  • Patent number: 9153846
    Abstract: A battery pack and a method for controlling charge-and-discharge of the battery pack by its thermoelectric property are provided, in which the battery pack has a plurality of thermal regions divided by different ranges of temperature. The battery pack includes a plurality of parallel-connected battery groups and a plurality of variable resistances. The parallel-connected battery groups are located in the thermal regions respectively, and each of the parallel-connected battery groups includes batteries connected in parallel. The variable resistances are disposed between two parallel-connected battery groups.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: October 6, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Hao Liang, Yu-Min Peng, Shou-Hung Ling, Chung-Jen Chou, Chein-Chung Sun, Chun-Ho Tai
  • Patent number: 9017853
    Abstract: A lithium battery is provided. The lithium battery comprises an positive electrode plate having a first surface, a negative electrode plate having a second surface, a first thermal insulating layer and a separator. The first surface is opposite to the second surface. The thermal insulating layer is disposed on one of the first surface and the second surface. The thermal insulating layer is comprised of an inorganic material, a thermal activation material and a binder. The separator is disposed between the positive electrode plate and the negative electrode plate.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: April 28, 2015
    Assignee: Industrial Technololgy Research Institute
    Inventors: Ping-Yao Wu, Wen-Bing Chu, Chang-Rung Yang, Jen-Jeh Lee, Jing-Pin Pan, Tsung-Hsiung Wang, Yu-Min Peng
  • Patent number: 8785026
    Abstract: A protection structure for preventing thermal dissipation and thermal runaway diffusion in battery system is provided. The protection structure includes a battery module casing and at least one composite heat conduction plate. There is a plurality of unit cells disposed in the battery module casing. The composite heat conduction plate is located within the battery module casing, contacted with the battery module casing, and sandwiched between at least two of the unit cells as a heat transmission medium between the cells and the casing to control heat transmission among the cells. The composite heat conduction plate is a multilayer anisotropic heat conduction structure constituted by at least one heat conduction layer and at least one heat insulation layer.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: July 22, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Hsien-Lin Hu, Jenn-Dong Hwang, Cheng-Chou Wong, Chin-Chuan Chang, Sheng-Fa Yeh, Bing-Ming Lin, Yu-Min Peng
  • Patent number: 8460427
    Abstract: A method for manufacturing metal nano particles having a hollow structure is provided. First, a suitable reducing agent is added into a first metal salt solution, and first metal ions are reduced to form first metal nano particles. Next, after the reducing agent is decomposed, a second metal salt solution with a higher reduction potential than that of the first metal is added. Then, the first metal particles are oxidized to form first metal ions when the second metal ions are reduced on the surface of the first metal by electrochemical oxidation reduction reaction, and thus, second metal nano particles having a hollow structure and a larger surface area are obtained. The method is simple and the metal nano particles with uniform particle size are obtained by this method.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: June 11, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Li-Duan Tsai, Kan-Lin Hsueh, Sung-Chun Chang, Man-Yin Lo, Yu-Min Peng, Chun-Chieh Huang, Ru-Shi Liu, Hao-Ming Chen, Hsin-Chieh Peng
  • Publication number: 20130127423
    Abstract: A battery pack and a method for controlling charge-and-discharge of the battery pack by its thermoelectric property are provided, in which the battery pack has a plurality of thermal regions divided by different ranges of temperature. The battery pack includes a plurality of parallel-connected battery groups and a plurality of variable resistances. The parallel-connected battery groups are located in the thermal regions respectively, and each of the parallel-connected battery groups includes batteries connected in parallel. The variable resistances are disposed between two parallel-connected battery groups.
    Type: Application
    Filed: June 26, 2012
    Publication date: May 23, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shih-Hao Liang, Yu-Min Peng, Shou-Hung Ling, Chung-Jen Chou, Chein-Chung Sun, Chun-Ho Tai
  • Publication number: 20120164513
    Abstract: The present discloser provides a battery separator, including: a porous hyper-branched polymer which undergoes a closed-pore mechanism at a field effect condition, wherein the field effect condition includes at least one of a temperature being above 150° C., a voltage being 20V, or a current being 6 A; and a porous structure material. The invention also provides a method for manufacturing the battery separator and a secondary battery having the battery separator.
    Type: Application
    Filed: September 18, 2011
    Publication date: June 28, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yu Min Peng, Jing-Pin Pan, Tsung-Hsiung Wang, Chang-Rung Yang
  • Publication number: 20120164511
    Abstract: A lithium battery is provided. The lithium battery comprises an positive electrode plate having a first surface, a negative electrode plate having a second surface, a first thermal insulating layer and a separator. The first surface is opposite to the second surface. The thermal insulating layer is disposed on one of the first surface and the second surface. The thermal insulating layer is comprised of an inorganic material, a thermal activation material and a binder. The separator is disposed between the positive electrode plate and the negative electrode plate.
    Type: Application
    Filed: August 22, 2011
    Publication date: June 28, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ping-Yao Wu, Wen-Bing Chu, Chang-Rung Yang, Jen-Jeh Lee, Jing-Pin Pan, Tsung-Hsiung Wang, Yu-Min Peng
  • Publication number: 20120009477
    Abstract: An anode material of rapidly chargeable lithium battery and a manufacturing method thereof are provided. The anode material includes a carbon core and a modification layer. The modification layer is formed on a surface of the carbon core by sol-gel method. This modification layer is a composite lithium metal oxide represented by the formula Li4M5O12-MOx, wherein M represents Ti or Mn, and 1?x?2.
    Type: Application
    Filed: September 28, 2010
    Publication date: January 12, 2012
    Applicant: Industrial Technology Research Institute
    Inventors: Jin-Ming Chen, Yen-Po Chang, Shih-Chieh Liao, Yu-Min Peng, Chi-Ju Cheng, Meng-Lun Lee
  • Publication number: 20110159340
    Abstract: A protection structure for preventing thermal dissipation and thermal runaway diffusion in battery system is provided. The protection structure includes a battery module casing and at least one composite heat conduction plate. There is a plurality of unit cells disposed in the battery module casing. The composite heat conduction plate is located within the battery module casing, contacted with the battery module casing, and sandwiched between at least two of the unit cells as a heat transmission medium between the cells and the casing to control heat transmission among the cells. The composite heat conduction plate is a multilayer anisotropic heat conduction structure constituted by at least one heat conduction layer and at least one heat insulation layer.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 30, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsien-Lin Hu, Jenn-Dong Hwang, Cheng-Chou Wong, Chin-Chuan Chang, Sheng-Fa Yeh, Bing-Ming Lin, Yu-Min Peng
  • Patent number: 7867942
    Abstract: The invention provides a method for manufacturing a highly dispersed carbon supported metal catalyst, including charging a carbon support and a dispersing agent in water. The carbon support is evenly dispersed in water with an average diameter of 10 nm to 2000 nm and a specific surface area of 50 m2/g to 1500 m2/g. A metal salt of Pd, Pt, or combinations thereof is formed on the carbon support surface and then reduced to a valance state less than (IV).
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: January 11, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Man-Yin Lo, Hsi-Yen Hsu, Yan Zhi Chen, Li Duan Tsai, Yu Min Peng
  • Publication number: 20090131247
    Abstract: The invention provides a method for manufacturing a highly dispersed carbon supported metal catalyst, including charging a carbon support and a dispersing agent in water. The carbon support is evenly dispersed in water with an average diameter of 10 nm to 2000 nm and a specific surface area of 50 m2/g to 1500 m2/g. A metal salt of Pd, Pt, or combinations thereof is formed on the carbon support surface and then reduced to a valance state less than (IV).
    Type: Application
    Filed: April 1, 2008
    Publication date: May 21, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Man-Yin Lo, Hsi-Yen Hsu, Yan Zhi Chen, Li Duan Tsai, Yu Min Peng
  • Publication number: 20090035575
    Abstract: A method for manufacturing metal nano particles having a hollow structure is provided. First, a suitable reducing agent is added into a first metal salt solution, and first metal ions are reduced to form first metal nano particles. Next, after the reducing agent is decomposed, a second metal salt solution with a higher reduction potential than that of the first metal is added. Then, the first metal particles are oxidized to form first metal ions when the second metal ions are reduced on the surface of the first metal by electrochemical oxidation reduction reaction, and thus, second metal nano particles having a hollow structure and a larger surface area are obtained. The method is simple and the metal nano particles with uniform particle size are obtained by this method.
    Type: Application
    Filed: October 17, 2007
    Publication date: February 5, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Li-Duan Tsai, Kan-Lin Hsueh, Sung-Chun Chang, Man-Yin Lo, Yu-Min Peng, Chun-Chieh Huang, Ru-Shi Liu, Hao Ming Chen, Hsin-Chieh Peng
  • Patent number: 7125431
    Abstract: A method for adhesion of wound electrodes or electrode lamination for use in a lithium-ion secondary battery, comprising acts of dissolving a polymer applied on electrode sheets in a selected solvent; applying the solvent containing polymer on surfaces of the electrode sheets; and vaporizing the solvent by heating to laminate electrode sheets together is disclosed.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: October 24, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Yih-Song Jan, Sheng-Feng Wu, Chang-Rung Yang, Yu-Min Peng
  • Publication number: 20030113442
    Abstract: A method for adhesion of wound electrodes or electrode lamination for use in a lithium-ion secondary battery, comprising acts of dissolving a polymer applied on electrode sheets in a selected solvent; applying the solvent containing polymer on surfaces of the electrode sheets; and vaporizing the solvent by heating to laminate electrode sheets together is disclosed.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 19, 2003
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH
    Inventors: Yih-Song Jan, Sheng-Feng Wu, Chang-Rung Yang, Yu-Min Peng
  • Patent number: 6522526
    Abstract: The present invention discloses TCNQ complex, shown as the following formula: wherein X represents identical or different double electron donors, TCNQ represents tetracyanoquinodimethane. The TCNQ complex is prepared by synthesizing TCNQ with double electron donors as the major composition. Different ratios between compositions can be adjusted based on the distinct properties of various electron donors to conform to different needs of manufacturing process. The TCNQ complex of the present invention is resistant to high voltage and high temperature. Its melting point is higher than the soldering temperature. In addition, the TCNQ complex has better conductivity that remains even after the heating/cooling cycle.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: February 18, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Li-Duan Tsai, Chang-Lin Chyung, Wen-Nan Tseng, Yu-Tim Tseng, Yu-Min Peng