Patents by Inventor Yu Sheng Bai

Yu Sheng Bai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7792433
    Abstract: A system and method for generating an optical return-to-zero signal. The system includes an electro-optical conversion system. The electro-optical conversion system is configured to receive an input electrical non-return-to-zero signal, process information associated with the input electrical non-return-to-zero signal, and generate an output optical return-to-zero signal based on at least information associated with the input electrical non-return-to-zero signal. The output optical return-to-zero signal is an optical differential return-to-zero signal, and the optical differential return-to-zero signal is associated with a frequency chirp.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: September 7, 2010
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7769256
    Abstract: A system for performance monitoring for a DWDM network. The system includes a photonic integrated device configured to receive an optical signal and output a first plurality of electrical signals for a plurality of channels respectively. The system also includes a clock and data recovery device configured to receive the first plurality of electric signals. Additionally, the system includes a switch device coupled to the first clock and data recovery device without an error correction device in between. The switch includes a first interface to output a second plurality of electrical signals and a second interface to add or drop one or more channel devices. The switch also includes an output port configured to provide information associated with the plurality of channels. An error detection device is coupled to the output port and is configured to monitor and report performance of the channels.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: August 3, 2010
    Assignee: FutureWei Technologies, Inc.
    Inventors: Yu Sheng Bai, Xiao Andy Shen
  • Patent number: 7742705
    Abstract: A system and method for providing chirped light for an optical network. The system includes a light source configured to provide a light. The system additionally includes a driving signal source configured to provide a first driving signal. The system also includes an amplifier configured to receive the first driving signal, amplify the first driving signal, and provide a second driving signal at a predetermined amplification level, the second driving signal being the amplified first signal. Additionally, the system includes a splitter configured to receive the second driving signal and split the second driving signal into a third driving signal and a fourth driving signal. The system also includes a first attenuator configured to receive the third driving signal, attenuate the third driving signal at a first attenuation level, and provide a fifth driving signal, the fifth driving signal being the third driving signal attenuated by the first attenuator.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: June 22, 2010
    Assignee: FutureWei Technologies, Inc.
    Inventors: Yu Sheng Bai, Fei Zhu
  • Patent number: 7739877
    Abstract: A thermoelectric cooler apparatus for a fiber optic system includes a first plate coupled to the fiber optic system and a second plate for coupling to a heat sink. The apparatus includes a first plurality of thermoelectric units and a second plurality of thermoelectric units being sandwiched between the first plate and the second plate for enhancing or retarding a heat transfer between the first plate and the second plate. The first plurality of thermoelectric units is connected to each other electrically in series. The second plurality of thermoelectric units is connected to each other electrically in series but insulated from the first plurality of thermoelectric units. The first plurality of thermoelectric units and the second plurality of thermoelectric units are configured such that a cross-section of the apparatus includes one or more of the second plurality of thermoelectric units being sandwiched by the first plurality of thermoelectric units.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: June 22, 2010
    Assignee: FutureWei Technologies, Inc.
    Inventors: Xiao Andy Shen, Yu Sheng Bai
  • Patent number: 7734190
    Abstract: A system and method for generating an optical return-to-zero signal. The system includes an electro-optical conversion system. The electro-optical conversion system is configured to receive an input electrical non-return-to-zero signal, process information associated with the input electrical non-return-to-zero signal, and generate a first electrical signal and a second electrical signal based on at least information associated with the input electrical non-return-to-zero signal. Additionally, the electro-optical conversion system is configured to delay a second electrical signal with respect to the first electrical signal by a predetermined period of time, process information associated with the first electrical signal and the delayed second electrical signal, and generate an output optical return-to-zero signal based on at least information associated with the first electrical signal and the delayed second electrical signal.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: June 8, 2010
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7720391
    Abstract: A system and method for generating an optical return-to-zero signal. The system includes a bit separator configured to receive an electrical non-return-to-zero signal and generate a first signal and a second signal, and a driver configured to receive the first signal and the second signal and generate a driving signal. The driving signal is associated with a difference between the first signal and the second signal. Additionally, the system includes a light source configured to generate a light, and an electro-optical modulator configured to receive the light and the driving signal, modulate the light with the driving signal, and generate an optical signal. The electrical non-return-to-zero signal includes a first plurality of bits and a second plurality of bits. The first signal includes the first plurality of bits, and the second signal includes the second plurality of bits. The optical signal is an optical return-to-zero signal.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: May 18, 2010
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7606501
    Abstract: A system and method for generating an optical return-to-zero signal with frequency chirp. The system includes a bit separator configured to receive an electrical non-return-to-zero signal and generate a first input signal and a second input signal. Additionally, the system includes a first driver configured to receive the first input signal and generate a first driving signal. The first driving signal is proportional to the first input signal in signal strength. Moreover, the system includes a second driver configured to receive the second input signal and generate a second driving signal. The second driving signal is proportional to the second input signal in signal strength. Also, the system includes a light source configured to generate a light, and an electro-optical modulator.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: October 20, 2009
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7561806
    Abstract: A method and system is disclosed for making timing alignment for a data transmission system, the method comprising providing a reference clock signal with a first frequency to a multiplexer through a phase shifter, generating a multiplexed signal with a second frequency by the multiplexer, wherein the second frequency follows the first frequency and is higher than the first frequency by a predetermined proportion, sending the multiplexed signal to a modulator, and phase shifting the reference clock signal by the phase shifter before the reference clock signal is provided to the multiplexer, wherein a timing of the multiplexed signal at the second frequency level can be adjusted by adjusting a timing of the reference clock signal at the lower first frequency level.
    Type: Grant
    Filed: April 1, 2006
    Date of Patent: July 14, 2009
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7542685
    Abstract: An apparatus and method for transmitting a signal for optical network applications with automatic chromatic dispersion compensation. The apparatus includes a first optical transmitter. The first optical transmitter includes a first light source configured to generate a first laser signal in response to a first laser drive signal, a first data modulator configured to receive the first laser signal and a first data drive signal and output a first chirped return-to-zero signal, and a first signal source configured to generate a first non-return-to-zero signal. Additionally, the apparatus includes a first clock and data recovery system, a first data driver, a first adjustment system, and a first control system.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: June 2, 2009
    Assignee: FutureWei Technologies, Inc.
    Inventors: Yu Sheng Bai, Rong Zhang
  • Patent number: 7532783
    Abstract: An integrated DWDM receiver apparatus includes a support component and a silica-on-silicon substrate overlying the support component. The substrate includes a silica layer overlying a silicon layer and includes a first surface region and a second surface region. An optical demultiplexer is disposed within the silica layer under the first surface region and overlying the silicon layer. The optical demultiplexer includes a plurality of output waveguides and at least an input waveguide. The receiver apparatus includes one or more reflecting structures located in the silica layer under the second surface region. Each of the reflecting structures is optically coupled to a corresponding output waveguide. The receiver apparatus also includes one or more semiconductor photodetector array chips overlying the second surface region of the silica-on-silicon substrate. Each of the one or more photodetector array chips including one or more photodetectors which is optically coupled to a corresponding reflecting structure.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: May 12, 2009
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7509047
    Abstract: Apparatus and method for transmitting a supervisory signal for optical network applications. The apparatus includes a subcarrier transmission system configured to receive a first supervisory signal and output a second supervisory signal, and an electrical-to-optical conversion system configured to receive the second supervisory signal and a data signal and output an optical signal. The second supervisory signal is associated with a subcarrier frequency. The data signal is associated with a data bandwidth, and the data bandwidth includes a data frequency. At the data frequency, a power density of the data signal is substantially equal to zero. A ratio of the subcarrier frequency to the data frequency ranges from 0.8 to 1, and the subcarrier frequency ranges from 2.4 GHz to 2.483 GHz.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: March 24, 2009
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7447443
    Abstract: A method and system is disclosed for making time alignment for a data transmission system. A first reference clock signal is provided to a first multiplexer coupled to a data modulator through a data driver, and a second reference clock signal is provided to a second multiplexer coupled to a clock modulator through a clock driver. Phase adjustment of the reference clock signal are conducted before the first reference clock signal is provided to the first multiplexer, wherein the phase adjustment aligns a timing of data modulated by the data modulator with a periodically modulated light source generated by the clock modulator.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: November 4, 2008
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Yu Sheng Bai
  • Patent number: 7444081
    Abstract: A method and system is disclosed to optically transport data at a data rate of about 5 Gbps without chromatic dispersion compensation. After receiving a first data stream at a data rate of about 2.5 Gbps and a second data stream at a data rate of about 2.5 Gbps, the first and second data streams are combined into a third data stream at a data rate of about 5 Gbps by interleaving the first data stream and the second data stream, wherein the third data stream is modulated for optically transporting the same from a transmission end.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: October 28, 2008
    Assignee: Futurewei Technologies, Inc.
    Inventors: Samuel Xing Liu, Yu Sheng Bai
  • Publication number: 20080253762
    Abstract: A system for performance monitoring for a DWDM network. The system includes a photonic integrated device configured to receive an optical signal and output a first plurality of electrical signals for a plurality of channels respectively. The system also includes a clock and data recovery device configured to receive the first plurality of electric signals. Additionally, the system includes a switch device coupled to the first clock and data recovery device without an error correction device in between. The switch includes a first interface to output a second plurality of electrical signals and a second interface to add or drop one or more channel devices. The switch also includes an output port configured to provide information associated with the plurality of channels. An error detection device is coupled to the output port and is configured to monitor and report performance of the channels.
    Type: Application
    Filed: December 10, 2007
    Publication date: October 16, 2008
    Applicant: FutureWei Technologies, Inc.
    Inventors: Yu Sheng Bai, Xiao Andy Shen
  • Patent number: 7421199
    Abstract: An apparatus and method for processing a supervisory signal for optical network applications. The apparatus includes a subcarrier transmission system configured to receive a first supervisory signal and output a second supervisory signal, and an electrical-to-optical conversion system configured to receive the second supervisory signal and a first data signal and output a first optical signal. Additionally, the apparatus includes an optical-to-electrical conversion system configured to receive the first optical signal and output a first electrical signal and a second data signal, and a subcarrier reception system configured to receive the first electrical signal and output a third supervisory signal. The second supervisory signal is associated with a first subcarrier frequency. The first data signal is associated with a first data bandwidth, and the first data bandwidth includes a first data frequency. A ratio of the first subcarrier frequency to the first data frequency ranges from 0.8 to 1.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: September 2, 2008
    Inventor: Yu Sheng Bai
  • Publication number: 20080205901
    Abstract: A system and method for multiple-channel line card. The system includes a first photonic integrated device configured to receive a first optical signal and output a first plurality of electrical signals for a first plurality of channels respectively. The first plurality of channels corresponds to a first plurality of wavelength ranges associated with the first optical signal. Additionally, the system includes a first clock and recovery device configured to receive the first plurality of electric signals and retime the first plurality of electric signals, and a first switch coupled to the first clock and recovery device, a first interface, and a second interface. Moreover, the system includes the first interface configured to output a second plurality of electrical signals to another system for multiple-channel line card, and the second interface configured to couple with one or more plugged first channel devices.
    Type: Application
    Filed: September 19, 2007
    Publication date: August 28, 2008
    Applicant: FutureWei Technologies, Inc.
    Inventors: Yu Sheng Bai, Xiao Andy Shen
  • Publication number: 20080175594
    Abstract: An optical network transmitter comprising a fractional-bit delay module, an optical modulator coupled to the fractional-bit delay module, and a band-limiting optical filter coupled to the optical modulator. Also disclosed is a transmission system comprising a source configured to generate two complementary binary data streams, a fractional-bit delay module in communication with the source and configured to delay one of the complementary binary data streams, a modulation module in communication with the source and the fractional-bit delay module and configured to convert the undelayed complementary binary data streams and the delayed complementary binary data streams into a fractional-bit delayed optical duobinary signal, and a band-limiting node in communication with the modulation module and configured to filter and transmit the optical duobinary signal.
    Type: Application
    Filed: October 1, 2007
    Publication date: July 24, 2008
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Yu Sheng Bai, Yanjun Zhu, Rong Zhang, Jizhong Liu, Jian Deng
  • Publication number: 20080134689
    Abstract: A thermoelectric cooler apparatus for a fiber optic system includes a first plate coupled to the fiber optic system and a second plate for coupling to a heat sink. The apparatus includes a first plurality of thermoelectric units and a second plurality of thermoelectric units being sandwiched between the first plate and the second plate for enhancing or retarding a heat transfer between the first plate and the second plate. The first plurality of thermoelectric units is connected to each other electrically in series. The second plurality of thermoelectric units is connected to each other electrically in series but insulated from the first plurality of thermoelectric units. The first plurality of thermoelectric units and the second plurality of thermoelectric units are configured such that a cross-section of the apparatus includes one or more of the second plurality of thermoelectric units being sandwiched by the first plurality of thermoelectric units.
    Type: Application
    Filed: September 19, 2007
    Publication date: June 12, 2008
    Applicant: FutureWei Technologies, Inc.
    Inventors: Xiao Andy Shen, Yu Sheng Bai
  • Publication number: 20080138066
    Abstract: Method and system for band blocking in an optical telecommunication network. According to an embodiment, the present invention provides a system for optical network. The system includes an input that is configured to receive an input signal through a first optical input. The system also includes a band splitting module that is coupled to the input. The band splitting module is configured to separate the input signal into a plurality of bands. The plurality of bands includes a first band and a second band. The first band includes a first plurality of wave channels. The first plurality of wave channels is characterized by a first channel spacing. The second band includes a second plurality of wave channels, which is characterized by a second channel spacing.
    Type: Application
    Filed: September 27, 2007
    Publication date: June 12, 2008
    Applicant: FutureWei Technologies, Inc.
    Inventors: Fei Zhu, Yu Sheng Bai
  • Publication number: 20080095536
    Abstract: An integrated DWDM transmitter apparatus includes a silica-on-silicon substrate overlying a first support component. The silica-on-silicon substrate includes a silica layer overlying a silicon layer. A coefficient of thermal expansion of the first support component is substantially matched to a coefficient of thermal expansion of the silicon layer. An optical multiplexer is located within the silica layer and includes a plurality of input waveguides and at least an output waveguide. Additionally, the apparatus includes a second support component attached to a side surface of the first support component. One or more semiconductor laser array chips overlie the second support component. A coefficient of thermal expansion of the one or more semiconductor chips is substantially matched to a coefficient of thermal expansion of the second support component.
    Type: Application
    Filed: October 3, 2007
    Publication date: April 24, 2008
    Applicant: FutureWei Technologies, Inc.
    Inventors: Xiao Andy Shen, Yu Sheng Bai