Patents by Inventor Yu-Shiuan Wang

Yu-Shiuan Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230395426
    Abstract: Provided is a conductive structure and a method for forming such a structure. The method includes forming a treatable layer by depositing a layer comprising a metal over a structure; performing a directional treatment process on a targeted portion of the treatable layer to convert the targeted portion to a material different from a non-targeted portion of the treatable layer, wherein the directional treatment process is selected from the group consisting of nitridation, oxidation, chlorination, carbonization; and selectively removing the non-targeted portion from the structure, wherein the targeted portion remains over the structure.
    Type: Application
    Filed: June 1, 2022
    Publication date: December 7, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Hsiang Chao, Shu-Lan Chang, Ching-Yi Chen, Shih-Wei Yeh, Pei Shan Chang, Ya-Yi Cheng, Yu-Chen Ko, Yu-Shiuan Wang, Chun-Hsien Huang, Hung-Chang Hsu, Chih-Wei Chang, Ming-Hsing Tsai, Wei-Jung Lin
  • Publication number: 20230008239
    Abstract: A barrier layer is formed in a portion of a thickness of sidewalls in a recess prior to formation of an interconnect structure in the recess. The barrier layer is formed in the portion of the thickness of the sidewalls by a plasma-based deposition operation, in which a precursor reacts with a silicon-rich surface to form the barrier layer. The barrier layer is formed in the portion of the thickness of the sidewalls in that the precursor consumes a portion of the silicon-rich surface of the sidewalls as a result of the plasma treatment. This enables the barrier layer to be formed in a manner in which the cross-sectional width reduction in the recess from the barrier layer is minimized while enabling the barrier layer to be used to promote adhesion in the recess.
    Type: Application
    Filed: April 12, 2022
    Publication date: January 12, 2023
    Inventors: Chien CHANG, Min-Hsiu HUNG, Yu-Hsiang LIAO, Yu-Shiuan WANG, Tai Min CHANG, Kan-Ju LIN, Chih-Shiun CHOU, Hung-Yi HUANG, Chih-Wei CHANG, Ming-Hsing TSAI
  • Publication number: 20220367667
    Abstract: Embodiments disclosed herein relate generally to forming an effective metal diffusion barrier in sidewalls of epitaxy source/drain regions. In an embodiment, a structure includes an active area having a source/drain region on a substrate, a dielectric layer over the active area and having a sidewall aligned with the sidewall of the source/drain region, and a conductive feature along the sidewall of the dielectric layer to the source/drain region. The source/drain region has a sidewall and a lateral surface extending laterally from the sidewall of the source/drain region, and the source/drain region further includes a nitrided region extending laterally from the sidewall of the source/drain region into the source/drain region. The conductive feature includes a silicide region along the lateral surface of the source/drain region and along at least a portion of the sidewall of the source/drain region.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Inventors: Yu-Wen Cheng, Cheng-Tung Lin, Chih-Wei Chang, Hong-Mao Lee, Ming-Hsing Tsai, Sheng-Hsuan Lin, Wei-Jung Lin, Yan-Ming Tsai, Yu-Shiuan Wang, Hung-Hsu Chen, Wei-Yip Loh, Ya-Yi Cheng
  • Patent number: 11411094
    Abstract: Embodiments disclosed herein relate generally to forming an effective metal diffusion barrier in sidewalls of epitaxy source/drain regions. In an embodiment, a structure includes an active area having a source/drain region on a substrate, a dielectric layer over the active area and having a sidewall aligned with the sidewall of the source/drain region, and a conductive feature along the sidewall of the dielectric layer to the source/drain region. The source/drain region has a sidewall and a lateral surface extending laterally from the sidewall of the source/drain region, and the source/drain region further includes a nitrided region extending laterally from the sidewall of the source/drain region into the source/drain region. The conductive feature includes a silicide region along the lateral surface of the source/drain region and along at least a portion of the sidewall of the source/drain region.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Wen Cheng, Cheng-Tung Lin, Chih-Wei Chang, Hong-Mao Lee, Ming-Hsing Tsai, Sheng-Hsuan Lin, Wei-Jung Lin, Yan-Ming Tsai, Yu-Shiuan Wang, Hung-Hsu Chen, Wei-Yip Loh, Ya-Yi Cheng
  • Publication number: 20210296168
    Abstract: Generally, examples are provided relating to conductive features that include a barrier layer, and to methods thereof. In an embodiment, a metal layer is deposited in an opening through a dielectric layer(s) to a source/drain region. The metal layer is along the source/drain region and along a sidewall of the dielectric layer(s) that at least partially defines the opening. The metal layer is nitrided, which includes performing a multiple plasma process that includes at least one directional-dependent plasma process. A portion of the metal layer remains un-nitrided by the multiple plasma process. A silicide region is formed, which includes reacting the un-nitrided portion of the metal layer with a portion of the source/drain region. A conductive material is disposed in the opening on the nitrided portions of the metal layer.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Inventors: Wei-Yip Loh, Chih-Wei Chang, Hong-Mao Lee, Chun-Hsien Huang, Yu-Ming Huang, Yan-Ming Tsai, Yu-Shiuan Wang, Hung-Hsu Chen, Yu-Kai Chen, Yu-Wen Cheng
  • Patent number: 11031286
    Abstract: Generally, examples are provided relating to conductive features that include a barrier layer, and to methods thereof. In an embodiment, a metal layer is deposited in an opening through a dielectric layer(s) to a source/drain region. The metal layer is along the source/drain region and along a sidewall of the dielectric layer(s) that at least partially defines the opening. The metal layer is nitrided, which includes performing a multiple plasma process that includes at least one directional-dependent plasma process. A portion of the metal layer remains un-nitrided by the multiple plasma process. A silicide region is formed, which includes reacting the un-nitrided portion of the metal layer with a portion of the source/drain region. A conductive material is disposed in the opening on the nitrided portions of the metal layer.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Yip Loh, Chih-Wei Chang, Hong-Mao Lee, Chun-Hsien Huang, Yu-Ming Huang, Yan-Ming Tsai, Yu-Shiuan Wang, Hung-Hsu Chen, Yu-Kai Chen, Yu-Wen Cheng
  • Publication number: 20200152763
    Abstract: Embodiments disclosed herein relate generally to forming an effective metal diffusion barrier in sidewalls of epitaxy source/drain regions. In an embodiment, a structure includes an active area having a source/drain region on a substrate, a dielectric layer over the active area and having a sidewall aligned with the sidewall of the source/drain region, and a conductive feature along the sidewall of the dielectric layer to the source/drain region. The source/drain region has a sidewall and a lateral surface extending laterally from the sidewall of the source/drain region, and the source/drain region further includes a nitrided region extending laterally from the sidewall of the source/drain region into the source/drain region. The conductive feature includes a silicide region along the lateral surface of the source/drain region and along at least a portion of the sidewall of the source/drain region.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Yu-Wen Cheng, Cheng-Tung Lin, Chih-Wei Chang, Hong-Mao Lee, Ming-Hsing Tsai, Sheng-Hsuan Lin, Wei-Jung Lin, Yan-Ming Tsai, Yu-Shiuan Wang, Hung-Hsu Chen, Wei-Yip Loh, Ya-Yi Cheng
  • Patent number: 10535748
    Abstract: Embodiments disclosed herein relate generally to forming an effective metal diffusion barrier in sidewalls of epitaxy source/drain regions. In an embodiment, a structure includes an active area having a source/drain region on a substrate, a dielectric layer over the active area and having a sidewall aligned with the sidewall of the source/drain region, and a conductive feature along the sidewall of the dielectric layer to the source/drain region. The source/drain region has a sidewall and a lateral surface extending laterally from the sidewall of the source/drain region, and the source/drain region further includes a nitrided region extending laterally from the sidewall of the source/drain region into the source/drain region. The conductive feature includes a silicide region along the lateral surface of the source/drain region and along at least a portion of the sidewall of the source/drain region.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Wen Cheng, Cheng-Tung Lin, Chih-Wei Chang, Hong-Mao Lee, Ming-Hsing Tsai, Sheng-Hsuan Lin, Wei-Jung Lin, Yan-Ming Tsai, Yu-Shiuan Wang, Hung-Hsu Chen, Wei-Yip Loh, Ya-Yi Cheng
  • Publication number: 20190273147
    Abstract: Embodiments disclosed herein relate generally to forming an effective metal diffusion barrier in sidewalls of epitaxy source/drain regions. In an embodiment, a structure includes an active area having a source/drain region on a substrate, a dielectric layer over the active area and having a sidewall aligned with the sidewall of the source/drain region, and a conductive feature along the sidewall of the dielectric layer to the source/drain region. The source/drain region has a sidewall and a lateral surface extending laterally from the sidewall of the source/drain region, and the source/drain region further includes a nitrided region extending laterally from the sidewall of the source/drain region into the source/drain region. The conductive feature includes a silicide region along the lateral surface of the source/drain region and along at least a portion of the sidewall of the source/drain region.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Wen CHENG, Cheng-Tung LIN, Chih-Wei CHANG, Hong-Mao LEE, Ming-Hsing TSAI, Sheng-Hsuan LIN, Wei-Jung LIN, Yan-Ming TSAI, Yu-Shiuan WANG, Hung-Hsu CHEN, Wei-Yip LOH, Ya-Yi CHENG
  • Publication number: 20190273023
    Abstract: Generally, examples are provided relating to conductive features that include a barrier layer, and to methods thereof. In an embodiment, a metal layer is deposited in an opening through a dielectric layer(s) to a source/drain region. The metal layer is along the source/drain region and along a sidewall of the dielectric layer(s) that at least partially defines the opening. The metal layer is nitrided, which includes performing a multiple plasma process that includes at least one directional-dependent plasma process. A portion of the metal layer remains un-nitrided by the multiple plasma process. A silicide region is formed, which includes reacting the un-nitrided portion of the metal layer with a portion of the source/drain region. A conductive material is disposed in the opening on the nitrided portions of the metal layer.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Yip LOH, Chih-Wei CHANG, Hong-Mao LEE, Chun-Hsien HUANG, Yu-Ming HUANG, Yan-Ming TSAI, Yu-Shiuan WANG, Hung-Hsu CHEN, Yu-Kai CHEN, Yu-Wen CHENG
  • Patent number: 9368357
    Abstract: A method includes etching a dielectric layer to form an opening, with an underlying region underlying the dielectric layer exposed to the opening, and performing a bombardment to bombard a surface region of the underlying region through the opening. After the bombardment, the surface region is reacted with a process gas to form a reaction layer. An anneal is then performed to remove the reaction layer.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: June 14, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Chang, Hung-Chang Hsu, Chun-Hsien Huang, Yu-Hung Lin, Li-Wei Chu, Sheng-Hsuan Lin, Wei-Jung Lin, Yu-Shiuan Wang
  • Publication number: 20160126102
    Abstract: A method includes etching a dielectric layer to form an opening, with an underlying region underlying the dielectric layer exposed to the opening, and performing a bombardment to bombard a surface region of the underlying region through the opening. After the bombardment, the surface region is reacted with a process gas to form a reaction layer. An anneal is then performed to remove the reaction layer.
    Type: Application
    Filed: December 29, 2015
    Publication date: May 5, 2016
    Inventors: Chih-Wei Chang, Hung-Chang Hsu, Chun-Hsien Huang, Yu-Hung Lin, Li-Wei Chu, Sheng-Hsuan Lin, Wei-Jung Lin, Yu-Shiuan Wang
  • Patent number: 9230795
    Abstract: A method includes etching a dielectric layer to form an opening, with an underlying region underlying the dielectric layer exposed to the opening, and performing a bombardment to bombard a surface region of the underlying region through the opening. After the bombardment, the surface region is reacted with a process gas to form a reaction layer. An anneal is then performed to remove the reaction layer.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: January 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Shiuan Wang, Hung-Chang Hsu, Li-Wei Chu, Sheng-Hsuan Lin, Chun-Hsien Huang, Yu-Hung Lin, Chih-Wei Chang, Wei-Jung Lin