Patents by Inventor Yu Shu SHEN
Yu Shu SHEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11532610Abstract: An Electrostatic Discharge protection circuit with low parasitic capacitance is provided, comprising a first bipolar junction transistor and a first ESD power clamp device. The first bipolar junction transistor is an NPN type of bipolar junction transistor, including a base and an emitter commonly connected to an I/O terminal and a collector connected with the first ESD power clamp device. The first ESD power clamp device is further connected to ground, and can be a Zener diode, PNP type, NPN type of bipolar junction transistor or the like. When a positive ESD pulse is injected, an ESD protection path is consisting of the first bipolar junction transistor and the first ESD power clamp device. When a negative ESD pulse is injected, the ESD protection path is consisting of a parasitic silicon controlled rectifier, thereby reducing parasitic capacitance effectively.Type: GrantFiled: June 24, 2020Date of Patent: December 20, 2022Assignee: Amazing Microelectronic Corp.Inventor: Yu-Shu Shen
-
Publication number: 20210407987Abstract: An Electrostatic Discharge protection circuit with low parasitic capacitance is provided, comprising a first bipolar junction transistor and a first ESD power clamp device. The first bipolar junction transistor is an NPN type of bipolar junction transistor, including a base and an emitter commonly connected to an I/O terminal and a collector connected with the first ESD power clamp device. The first ESD power clamp device is further connected to ground, and can be a Zener diode, PNP type, NPN type of bipolar junction transistor or the like. When a positive ESD pulse is injected, an ESD protection path is consisting of the first bipolar junction transistor and the first ESD power clamp device. When a negative ESD pulse is injected, the ESD protection path is consisting of a parasitic silicon controlled rectifier, thereby reducing parasitic capacitance effectively.Type: ApplicationFiled: June 24, 2020Publication date: December 30, 2021Inventor: Yu-Shu Shen
-
Patent number: 10930637Abstract: A transient voltage suppressor is provided, comprising a heavily doped substrate connected to a first node, a first doped layer formed on the heavily doped substrate, a second doped layer formed on the first doped layer, a first heavily doped region and a second heavily doped region formed in the second doped layer and coupled to a second node, and a plurality of trenches arranged in the heavily doped substrate, having a depth not less than that of the first doped layer for electrical isolation. The heavily doped substrate, the second doped layer, and the second heavily doped region belong to a first conductivity type. The first doped layer and the first heavily doped region belong to a second conductivity type. By employing the proposed present invention, pn junctions of the transient voltage suppressor can be controlled beneath the surface, thereby reducing the junction capacitance effectively.Type: GrantFiled: September 6, 2018Date of Patent: February 23, 2021Assignee: Amazing Microelectronic Corp.Inventors: Yu-Shu Shen, Mei-Lian Fan
-
Patent number: 10685954Abstract: A silicon controlled rectifier includes a P-type substrate, an N-type doped well, a first P-type strip-shaped heavily-doped area arranged in the N-type doped well, a first N-type strip-shaped heavily-doped area arranged in the P-type substrate, and at least one N-type heavily-doped area arranged in the P-type substrate and the N-type doped well. The at least one N-type heavily-doped area is not arranged between the first P-type strip-shaped heavily-doped area and the first N-type strip-shaped heavily-doped area, thus the surface area of a semiconductor substrate can be reduced. The conductivity types of the abovementioned components are alternatively changed.Type: GrantFiled: November 28, 2018Date of Patent: June 16, 2020Assignee: Amazing Microelectronic Corp.Inventors: Yu-Shu Shen, Pin-Hui Lee
-
Publication number: 20200168598Abstract: A silicon controlled rectifier includes a P-type substrate, an N-type doped well, a first P-type strip-shaped heavily-doped area arranged in the N-type doped well, a first N-type strip-shaped heavily-doped area arranged in the P-type substrate, and at least one N-type heavily-doped area arranged in the P-type substrate and the N-type doped well. The at least one N-type heavily-doped area is not arranged between the first P-type strip-shaped heavily-doped area and the first N-type strip-shaped heavily-doped area, thus the surface area of a semiconductor substrate can be reduced. The conductivity types of the abovementioned components are alternatively changed.Type: ApplicationFiled: November 28, 2018Publication date: May 28, 2020Inventors: YU-SHU SHEN, PIN-HUI LEE
-
Publication number: 20200083211Abstract: A transient voltage suppressor is provided, comprising a heavily doped substrate connected to a first node, a first doped layer formed on the heavily doped substrate, a second doped layer formed on the first doped layer, a first heavily doped region and a second heavily doped region formed in the second doped layer and coupled to a second node, and a plurality of trenches arranged in the heavily doped substrate, having a depth not less than that of the first doped layer for electrical isolation. The heavily doped substrate, the second doped layer, and the second heavily doped region belong to a first conductivity type. The first doped layer and the first heavily doped region belong to a second conductivity type. By employing the proposed present invention, pn junctions of the transient voltage suppressor can be controlled beneath the surface, thereby reducing the junction capacitance effectively.Type: ApplicationFiled: September 6, 2018Publication date: March 12, 2020Inventors: YU-SHU SHEN, MEI-LIAN FAN
-
Patent number: 10573635Abstract: A transient voltage suppression device with improved electrostatic discharge (ESD) robustness includes a semiconductor substrate having a first conductivity type, a first doped well having a second conductivity type, a first heavily-doped area having the first conductivity type, a second doped well having the second conductivity type, a second heavily-doped area having the first conductivity type, and a first current blocking structure. The first doped well is arranged in the semiconductor substrate. The first heavily-doped area is arranged in the first doped well. The second doped well is arranged in the semiconductor substrate. The second heavily-doped area is arranged in the second doped well. The first current blocking structure is arranged in the semiconductor substrate, spaced from the bottom of the semiconductor substrate, and arranged between the first doped well and the second doped well.Type: GrantFiled: July 23, 2018Date of Patent: February 25, 2020Assignee: Amazing Microelectronics Corp.Inventors: Chih-Wei Chen, Yu-Shu Shen, Kun-Hsien Lin
-
Publication number: 20200027873Abstract: A transient voltage suppression device with improved electrostatic discharge (ESD) robustness includes a semiconductor substrate having a first conductivity type, a first doped well having a second conductivity type, a first heavily-doped area having the first conductivity type, a second doped well having the second conductivity type, a second heavily-doped area having the first conductivity type, and a first current blocking structure. The first doped well is arranged in the semiconductor substrate. The first heavily-doped area is arranged in the first doped well. The second doped well is arranged in the semiconductor substrate. The second heavily-doped area is arranged in the second doped well. The first current blocking structure is arranged in the semiconductor substrate, spaced from the bottom of the semiconductor substrate, and arranged between the first doped well and the second doped well.Type: ApplicationFiled: July 23, 2018Publication date: January 23, 2020Inventors: CHIH-WEI CHEN, YU-SHU SHEN, KUN-HSIEN LIN
-
Patent number: 8431999Abstract: A low capacitance transient voltage suppressor is disclosed. The suppressor comprises an N-type heavily doped substrate and an epitaxial layer formed on the substrate. At least one steering diode structure formed in the epitaxial layer comprises a diode lightly doped well and a first P-type lightly doped well, wherein a P-type heavily doped area is formed in the diode lightly doped well and a first N-type heavily doped area and a second P-type heavily doped area are formed in the first P-type lightly doped well. A second P-type lightly doped well having two N-type heavily doped areas is formed in the epitaxial layer. In addition, an N-type heavily doped well and at least one deep isolation trench are formed in the epitaxial layer, wherein the trench has a depth greater than or equal to depths of all the doped wells, so as to separate at least one doped well.Type: GrantFiled: March 25, 2011Date of Patent: April 30, 2013Assignee: Amazing Microelectronic Corp.Inventors: Yu-Shu Shen, Kun-Hsien Lin, Che-Hao Chuang, Ryan Hsin-Chin Jiang
-
Publication number: 20120241903Abstract: A low capacitance transient voltage suppressor is disclosed. The suppressor comprises an N-type heavily doped substrate and an epitaxial layer formed on the substrate. At least one steering diode structure formed in the epitaxial layer comprises a diode lightly doped well and a first P-type lightly doped well, wherein a P-type heavily doped area is formed in the diode lightly doped well and a first N-type heavily doped area and a second P-type heavily doped area are formed in the first P-type lightly doped well. A second P-type lightly doped well having two N-type heavily doped areas is formed in the epitaxial layer. In addition, an N-type heavily doped well and at least one deep isolation trench are formed in the epitaxial layer, wherein the trench has a depth greater than or equal to depths of all the doped wells, so as to separate at least one doped well.Type: ApplicationFiled: March 25, 2011Publication date: September 27, 2012Inventors: Yu-Shu SHEN, Kun-Hsien Lin, Che-Hao Chuang, Ryan Hsin-Chin Jiang
-
Publication number: 20090242900Abstract: The invention discloses a memory device and method thereof. The memory device comprises a substrate, an insulator layer, a first conducting layer, a CaCu3Ti4O12 resistor layer and a second conducting layer. The insulator layer is formed over the substrate. The first conducting layer is formed over the insulator layer. The CaCu3Ti4O12 resistor layer is formed over the first conducting layer. The second conducting layer is formed over the CaCu3Ti4O12 resistor layer. In manufacturing, firstly, a substrate is provided. Then, a resistor layer is formed on the substrate. Next, a first conducting layer is formed on the resistor layer. Afterward, a CaCu3Ti4O12 resistor layer is formed on the first conducting layer by utilizing sol-gel method. Finally, a second conducting layer is formed on the CaCu3Ti4O12 resistor layer. The invention not only satisfies a requirement of low driving voltage in electronic product but also increases reliability and compatibility even cost is diminished.Type: ApplicationFiled: August 25, 2008Publication date: October 1, 2009Applicant: NATIONAL CHIAO TUNG UNIVERSITYInventors: Bi Shiou CHIOU, Li Chun CHANG, Chia Cheng HO, Dai Ying LEE, Yu Shu SHEN