Patents by Inventor Yu-Tang Li

Yu-Tang Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122055
    Abstract: The present invention relates to an organic semiconducting compound and organic optoelectronic components using the same. The organic semiconducting compound own a novel chemical structure. By using the organic semiconducting compound to prepare organic optoelectronic compounds, environmentally friendly non-halogen solvent can be used. In addition, the photoresponsivity and detectivity are excellent in the near-infrared region.
    Type: Application
    Filed: September 15, 2023
    Publication date: April 11, 2024
    Inventors: Yu-Tang Hsiao, Fang-Ning Li, Chuang-Yi Liao
  • Patent number: 11957051
    Abstract: An organic semiconductor mixture and an organic optoelectronic device containing the same are provided. A n-type organic semiconductor compound in the organic semiconductor mixture has a novel chemical structure so that the mixture has good thermal stability and property difference during batch production is also minimized. The organic semiconductor mixture is applied to organic optoelectronic devices such as organic photovoltaic devices for providing good energy conversion efficiency while in use.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: April 9, 2024
    Assignee: RAYNERGY TEK INCORPORATION
    Inventors: Chia-Hua Tsai, Chuang-Yi Liao, Wei-Long Li, Yu-Tang Hsiao
  • Patent number: 11950491
    Abstract: A semiconductor mixed material comprises an electron donor, a first electron acceptor and a second electron acceptor. The first electron donor is a conjugated polymer. The energy gap of the first electron acceptor is less than 1.4 eV. At least one of the molecular stackability, ?-?*stackability, and crystallinity of the second electron acceptor is smaller than the first electron acceptor. The electron donor system is configured to be a matrix to blend the first electron acceptor and the second electron acceptor. The present invention also provides an organic electronic device including the semiconductor mixed material.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: April 2, 2024
    Assignee: RAYNERGY TEK INCORPORATION
    Inventors: Yi-Ming Chang, Chuang-Yi Liao, Wei-Long Li, Yu-Tang Hsiao, Chun-Chieh Lee, Chia-Hua Li, Huei-Shuan Tan
  • Publication number: 20240088042
    Abstract: A semiconductor structure includes a dielectric layer over a substrate, a via conductor over the substrate and in the dielectric layer, and a first graphene layer disposed over the via conductor. In some embodiments, a top surface of the via conductor and a top surface of the dielectric layer are level. In some embodiments, the first graphene layer overlaps the via conductor from a top view. In some embodiments, the semiconductor structure further includes a second graphene layer under the via conductor and a third graphene layer between the dielectric layer and the via conductor. In some embodiments, the second graphene layer is between the substrate and the via conductor.
    Type: Application
    Filed: January 11, 2023
    Publication date: March 14, 2024
    Inventors: SHU-WEI LI, HAN-TANG HUNG, YU-CHEN CHAN, CHIEN-HSIN HO, SHIN-YI YANG, MING-HAN LEE, SHAU-LIN SHUE
  • Patent number: 11925101
    Abstract: An organic semiconducting compound and an organic photoelectric component containing the same are provided. The organic semiconducting compound has a novel chemical structure to make the organic semiconducting compound have good response to the infrared light. The organic semiconducting compound can be applied to the organic photoelectric components such as organic photodetector (OPD), organic photovoltaic (OPV) cell, and organic field-effect transistor (OFET). Thus, the organic photoelectric components have better light absorption range and photoelectric response while in use.
    Type: Grant
    Filed: September 9, 2022
    Date of Patent: March 5, 2024
    Assignee: RAYNERGY TEK INCORPORATION
    Inventors: Wei-Long Li, Yu-Tang Hsiao, Chia-Hua Tsai, Chuang-Yi Liao
  • Publication number: 20240071822
    Abstract: A method for manufacturing a semiconductor structure includes forming a first interconnect feature in a first dielectric feature, the first interconnect feature including a first conductive element exposed from the first dielectric feature; forming a first cap feature over the first conductive element, the first cap feature including a first cap element which includes a two-dimensional material; forming a second dielectric feature with a first opening that exposes the first cap element; forming a barrier layer over the second dielectric feature while exposing the first cap element from the barrier layer; removing a portion of the first cap element exposed from the barrier layer; and forming a second conductive element in the first opening.
    Type: Application
    Filed: August 31, 2022
    Publication date: February 29, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Lung CHUNG, Shin-Yi YANG, Yu-Chen CHAN, Han-Tang HUNG, Shu-Wei LI, Ming-Han LEE
  • Patent number: 10996166
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus comprises a light detector comprising at least two optical sensors capable of determining the intensity of the light; and a computer processing output signal generated by the optical sensors and comparing a result of the processing with a known result corresponding to a known type to determine whether the object belongs to the known type.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: May 4, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hung-Chun Chen, Ming-Chia Li, Chang-Sheng Chu, Yu-Tang Li, Chung-Fan Chiou
  • Patent number: 10760955
    Abstract: A dual sensor module includes a substrate, a light source, a first encapsulant, a second encapsulant, a photodetector, and an electrode. The light source is disposed on the substrate. The first encapsulant is formed over the light source. The photodetector is disposed on the substrate. The second encapsulant is formed over the photodetector. The electrode is electrically connected to the substrate and is entirely located between the light source and the photodetector. A dual sensing accessory and a dual sensing device having the dual sensor module for detecting optical and electrical properties are also provided.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Chang-Sheng Chu, Yu-Tang Li, Yeh-Wen Lee, Chih-Hsun Fan, Lung-Pin Chung, Jyh-Chern Chen, Shuang-Chao Chung
  • Patent number: 10631763
    Abstract: A method for non-invasive glucose monitoring includes the following steps. At least one ray of light is emitted from at least one light source. The light emitted from the light source is leaded into an eyeball and focused on the eyeball through a first beam splitter. The reflected light reflected from the eyeball is transmitted through the first beam splitter to a set of photo detectors. Optical angular information and energy information of the reflected light transmitted to the set of photo detectors are measured. Optical angular difference and energy difference resulting from the light emitted from the light source and the reflected light transmitted to the set of photo detectors are obtained. Glucose information is obtained by analyzing the optical angular difference and the energy difference. Since glucose information has a corresponding relationship with blood glucose information, blood glucose information may be obtained.
    Type: Grant
    Filed: July 16, 2017
    Date of Patent: April 28, 2020
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Pei-Fang Tsou, Pei-Cheng Ho, Kuan-Jui Ho
  • Patent number: 10337983
    Abstract: The present disclosure generally relates to an optical measurement module, an optical measurement device, and a method for optical measurement. The optical measurement module provides optical architecture to measure the optical properties of an analyte. The optical measurement device comprising the optical measurement module is configured to measure the optical properties of an analyte. The method for the optical measurement provides steps for optical measurement.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: July 2, 2019
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Pei-Cheng Ho, Kuan-Jui Ho, Shuang-Chao Chung, Chih-Hsun Fan, Jyh-Chern Chen
  • Publication number: 20190137332
    Abstract: A dual sensor module includes a substrate, a light source, a first encapsulant, a second encapsulant, a photodetector, and an electrode. The light source is disposed on the substrate. The first encapsulant is formed over the light source. The photodetector is disposed on the substrate. The second encapsulant is formed over the photodetector. The electrode is electrically connected to the substrate and is entirely located between the light source and the photodetector. A dual sensing accessory and a dual sensing device having the dual sensor module for detecting optical and electrical properties are also provided.
    Type: Application
    Filed: August 1, 2018
    Publication date: May 9, 2019
    Inventors: CHANG-SHENG CHU, YU-TANG LI, YEH-WEN LEE, CHIH-HSUN FAN, LUNG-PIN CHUNG, JYH-CHERN CHEN, SHUANG-CHAO CHUNG
  • Patent number: 10132677
    Abstract: The present disclosure relates to an optical sensing accessory, an optical sensing device, and an optical sensing system. An optical sensing accessory, an optical sensing device, or an optical sensing system comprises a plurality of optical sensor modules and other electronic modules to achieve multi-site measurement. An optical sensor module comprises a light source, a photodetector, and a substrate. The light source is configured to convert electric power into radiant energy and emit light to an object surface. The photodetector is configured to receive the light from an object surface and convert radiant energy into electrical current or voltage. An optical sensing accessory, an optical sensing device, or an optical sensing system and comprise the optical sensor module and other electronic modules to have further applications.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: November 20, 2018
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Chang-Sheng Chu, Yu-Tang Li, Yeh-Wen Lee, Chih-Hsun Fan, Lung-Pin Chung, Jyh-Chern Chen, Shuang-Chao Chung
  • Patent number: 10117612
    Abstract: A detecting device for detecting physiological parameters of a biological tissue includes a light source, at least one light detector, a package, an outer cover, and an optical microstructure. The light source is configured to emit a first beam and a second beam. The package is disposed on the light source and the light detector and is located on the transmission paths of the first and second beams. The outer cover covers the light source, the light detector and the package, and includes a top surface. The optical microstructure is located in the transmission paths of the first and second beams, and is arranged in parallel with the top surface of the outer cover. The optical microstructure includes at least one set of circles of different radii, and is made of a diffractive optical element, a holographic optical element, a computer-generated holographic element, a fresnel lens or a lens grating.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: November 6, 2018
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Shuang-Chao Chung, Chih-Hsun Fan, Jyh-Chern Chen
  • Patent number: 10103764
    Abstract: A wearable device for information delivery may comprise a physiological sensor, a microprocessor, a display and a wearable housing. The wearable device may effectively receive a signal, convert the signal into information and renders a layout on a display. A method for information delivery may comprise signal reception step, signal transformation step and information visualization step. The method may be extensively applied in a wearable device or a device comprising at least a physiological sensor, a microprocessor and a display.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: October 16, 2018
    Assignee: TAIWAN BIOPHOTONIC CORPORATION
    Inventors: Jyh-Chern Chen, Yu-Tang Li, Ting-Ju Chen, Wei-Ping Huang, Chih-Hsun Fan
  • Patent number: 10088356
    Abstract: The present disclosure relates to an optical sensor module, an optical sensing accessory, and an optical sensing device. An optical sensor module comprises a light source, a photodetector, an electrode and a substrate. The light source is configured to convert electric power into radiant energy and emit light to an object surface. The photodetector is configured to receive the light from an object surface and convert radiant energy into electrical current or voltage. The electrode is configured to detect an external circuit formed by the contact with an object surface. An optical sensing accessory and an optical sensing device comprise the optical sensor module and other electronic modules to have further applications.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: October 2, 2018
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Chang-Sheng Chu, Yu-Tang Li, Yeh-Wen Lee, Chih-Hsun Fan, Lung-Pin Chung, Jyh-Chern Chen, Shuang-Chao Chung
  • Patent number: 10048197
    Abstract: An optical measurement device includes a light source, first and second beam splitters, and first and second photodetectors. The light source that generates an emitted light beam. The first beam splitter that divides the emitted light beam into a compensation light beam and a measurement light beam. The first beam splitter directs the measurement light beam to a target. The second beam splitter that redirects the compensation light beam from the first beam splitter. A part of wavelength dependent characteristics of the first beam splitter and the second beam splitter are the same. The first photodetector that detects the compensation light beam redirected from the second beam splitter. The second photodetector that detects the measurement light beam reflected by the target and redirected by the first beam splitter. Another optical measurement device and an optical measurement method are also provided.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: August 14, 2018
    Assignee: TAIWAN BIOPHOTONIC CORPORATION
    Inventors: Yu-Tang Li, Chang-Sheng Chu, Kuan-Jui Ho, Pei-Cheng Ho, Shuang-Chao Chung, Chih-Hsun Fan, Jyh-Chern Chen
  • Patent number: 9995683
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus includes a light source and a waveguide. The waveguide includes a core layer and a first cladding layer. At least one nanowell is formed in at least the first cladding layer. The apparatus further includes a light detector. The light detector can detect a light emitted from a single molecule object contained in the at least one nanowell.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: June 12, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Fan Chiou, Rung-Ywan Tsai, Yu-Tang Li, Chih-Tsung Shih, Ming-Chia Li, Chang-Sheng Chu, Shuang-Chao Chung, Jung-Po Chen, Ying-Chih Pu
  • Publication number: 20180132771
    Abstract: A detecting device for detecting physiological parameters of a biological tissue includes a light source, at least one light detector, a package, an outer cover, and an optical microstructure. The light source is configured to emit a first beam and a second beam. The package is disposed on the light source and the light detector and is located on the transmission paths of the first and second beams. The outer cover covers the light source, the light detector and the package, and includes a top surface. The optical microstructure is located in the transmission paths of the first and second beams, and is arranged in parallel with the top surface of the outer cover. The optical microstructure includes at least one set of circles of different radii, and is made of a diffractive optical element, a holographic optical element, a computer-generated holographic element, a fresnel lens or a lens grating.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Inventors: YU-TANG LI, CHANG-SHENG CHU, SHUANG-CHAO CHUNG, CHIH-HSUN FAN, JYH-CHERN CHEN
  • Publication number: 20180067050
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus comprises a light detector comprising at least two optical sensors capable of determining the intensity of the light; and a computer processing output signal generated by the optical sensors and comparing a result of the processing with a known result corresponding to a known type to determine whether the object belongs to the known type.
    Type: Application
    Filed: August 25, 2017
    Publication date: March 8, 2018
    Inventors: Hung-Chun CHEN, Ming-Chia LI, Chang-Sheng CHU, Yu-Tang LI, Chung-Fan CHIOU
  • Patent number: 9883824
    Abstract: A detecting device includes at least one detecting module. In the detecting module, a light source unit is configured to emit a first beam and a second beam. The wavelength of the first beam is different from that of the second beam. A packaging unit is disposed on the light source unit and a light detecting unit and on transmission paths of the first beam and the second beam from the light source unit. An optical microstructure unit is disposed on the transmission paths of the first beam and the second beam. The first beam and the second beam emitted from the light source unit pass through the packaging unit to pass the optical microstructure unit to be transmitted to a biological tissue, and then pass through the optical microstructure unit to pass the packaging unit to be transmitted to the light detecting unit in sequence.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: February 6, 2018
    Assignee: Taiwan Biophotonic Corporation
    Inventors: Kuo-Tung Tiao, Jyh-Chern Chen, Yu-Tang Li, Chang-Sheng Chu, Shuang-Chao Chung, Chih-Hsun Fan, Ming-Chia Li