Patents by Inventor Yu-Te Lu

Yu-Te Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240090230
    Abstract: A memory array and an operation method of the memory array are provided. The memory array includes first and second ferroelectric memory devices formed along a gate electrode, a channel layer and a ferroelectric layer between the gate electrode and the channel layer. The ferroelectric memory devices include: a common source/drain electrode and two respective source/drain electrodes, separately in contact with a side of the channel layer opposite to the ferroelectric layer, wherein the common source/drain electrode is disposed between the respective source/drain electrodes; and first and second auxiliary gates, capacitively coupled to the channel layer, wherein the first auxiliary gate is located between the common source/drain electrode and one of the respective source/drain electrodes, and the second auxiliary gate is located between the common source/drain electrode and the other respective source/drain electrode.
    Type: Application
    Filed: January 9, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Ling Lu, Chen-Jun Wu, Ya-Yun Cheng, Sheng-Chih Lai, Yi-Ching Liu, Yu-Ming Lin, Feng-Cheng Yang, Chung-Te Lin
  • Patent number: 11044806
    Abstract: A multi-layer circuit structure is disposed on the delivery loading plate through the bottom-layer circuit structure, the delivery loading plate exposes the conductive corrosion-barrier layer, and the top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the bottom-layer circuit and the electrical connection layer. Therefore, before the multi-layer circuit board is delivered to the assembly company or before the multi-layer circuit board is packaged with chips, an electrical testing can be applied to the multi-layer circuit board.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: June 22, 2021
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Chin-Kuan Liu, Chao-Lung Wang, Shuo-Hsun Chang, Yu-Te Lu, Chin-Hsi Chang
  • Publication number: 20200128662
    Abstract: A manufacturing method for a multi-layer circuit board capable of being applied with electrical testing is provided. According to the multi-layer circuit board manufactured by the method, the multi-layer circuit structure is disposed on the delivery loading plate through the bottom-layer circuit structure, the delivery loading plate exposes the conductive corrosion-barrier layer, and the top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the bottom-layer circuit and the electrical connection layer. Therefore, before the multi-layer circuit board is delivered to the assembly company or before the multi-layer circuit board is packaged with chips, an electrical testing can be applied to the multi-layer circuit board to check if the multi-layer circuit board can be operated normally or not.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Chin-Kuan Liu, Chao-Lung Wang, Shuo-Hsun Chang, Yu-Te Lu, Chin-Hsi Chang
  • Patent number: 10548214
    Abstract: A multi-layer circuit board capable of being applied with electrical testing includes a metallic delivery loading plate, a bottom-layer circuit structure, a conductive corrosion-barrier layer, and a multi-layer circuit structure. The bottom-layer circuit structure is overlapping on the delivery loading plate. The conductive corrosion-barrier layer is disposed on the bottom dielectric layer. The multi-layer circuit structure is overlapping on the bottom-layer circuit structure. The top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the inner-layer circuit of the multi-layer circuit structure and the bottom-layer circuit of the bottom-layer circuit structure. The delivery loading plate and the bottom dielectric layer of the bottom-layer circuit structure expose the conductive corrosion-barrier layer.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: January 28, 2020
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Chin-Kuan Liu, Chao-Lung Wang, Shuo-Hsun Chang, Yu-Te Lu, Chin-Hsi Chang
  • Patent number: 10455694
    Abstract: A manufacturing method for a multi-layer circuit board is provided. The multi-layer circuit structure is disposed on the delivery loading plate through the bottom dielectric layer, the delivery loading plate and the patterned metal interface layer expose the conductive corrosion-barrier layer, and the top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the bottom-layer circuit and the electrical connection layer. Therefore, before the multi-layer circuit board is delivered to the assembly company or before the multi-layer circuit board is packaged with chips, an electrical testing can be applied to the multi-layer circuit board to check if the multi-layer circuit board can be operated normally or not.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: October 22, 2019
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Chin-Kuan Liu, Chao-Lung Wang, Shuo-Hsun Chang, Yu-Te Lu, Chin-Hsi Chang
  • Publication number: 20190269008
    Abstract: A manufacturing method for a multi-layer circuit board is provided. According to the multi-layer circuit board manufactured by the manufacturing method, the multi-layer circuit structure is disposed on the delivery loading plate through the bottom dielectric layer, the delivery loading plate and the patterned metal interface layer expose the conductive corrosion-barrier layer, and the top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the bottom-layer circuit and the electrical connection layer. Therefore, before the multi-layer circuit board is delivered to the assembly company or before the multi-layer circuit board is packaged with chips, an electrical testing can be applied to the multi-layer circuit board to check if the multi-layer circuit board can be operated normally or not.
    Type: Application
    Filed: May 9, 2019
    Publication date: August 29, 2019
    Inventors: Chin-Kuan Liu, Chao-Lung Wang, Shuo-Hsun Chang, Yu-Te Lu, Chin-Hsi Chang
  • Patent number: 10334719
    Abstract: A multi-layer circuit board capable of being applied with electrical testing includes a patterned metal-interface layer, a metallic delivery loading plate, an electrical connection layer, a conductive corrosion-barrier layer, a bottom dielectric layer, and a multi-layer circuit structure. The multi-layer circuit structure is disposed on the delivery loading plate through the bottom dielectric layer. The top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the bottom-layer circuit and the electrical connection layer. The delivery loading plate and the patterned metal-interface layer expose the conductive corrosion-barrier layer. Therefore, before the multi-layer circuit board is packaged, an electrical testing can be applied to the multi-layer circuit board to check if it can be operated normally.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: June 25, 2019
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Chin-Kuan Liu, Chao-Lung Wang, Shuo-Hsun Chang, Yu-Te Lu, Chin-Hsi Chang
  • Publication number: 20190059154
    Abstract: A multi-layer circuit board capable of being applied with electrical testing includes a metallic delivery loading plate, a bottom-layer circuit structure, a conductive corrosion-barrier layer, and a multi-layer circuit structure. The bottom-layer circuit structure is overlapping on the delivery loading plate. The conductive corrosion-barrier layer is disposed on the bottom dielectric layer. The multi-layer circuit structure is overlapping on the bottom-layer circuit structure. The top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the inner-layer circuit of the multi-layer circuit structure and the bottom-layer circuit of the bottom-layer circuit structure. The delivery loading plate and the bottom dielectric layer of the bottom-layer circuit structure expose the conductive corrosion-barrier layer.
    Type: Application
    Filed: November 30, 2017
    Publication date: February 21, 2019
    Inventors: Chin-Kuan Liu, Chao-Lung Wang, Shuo-Hsun Chang, Yu-Te Lu, Chin-Hsi Chang
  • Publication number: 20190059153
    Abstract: A multi-layer circuit board capable of being applied with electrical testing includes a patterned metal-interface layer, a metallic delivery loading plate, an electrical connection layer, a conductive corrosion-barrier layer, a bottom dielectric layer, and a multi-layer circuit structure. The multi-layer circuit structure is disposed on the delivery loading plate through the bottom dielectric layer. The top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the bottom-layer circuit and the electrical connection layer. The delivery loading plate and the patterned metal-interface layer expose the conductive corrosion-barrier layer. Therefore, before the multi-layer circuit board is packaged, an electrical testing can be applied to the multi-layer circuit board to check if it can be operated normally.
    Type: Application
    Filed: November 30, 2017
    Publication date: February 21, 2019
    Inventors: Chin-Kuan Liu, Chao-Lung Wang, Shuo-Hsun Chang, Yu-Te Lu, Chin-Hsi Chang
  • Publication number: 20170345748
    Abstract: A compound carrier board structure of Flip-Chip Chip-Scale Package and manufacturing method thereof provides a baseplate with an opening bonded to a carrier board in order to form a compound carrier board structure. A die is placed in the opening and bonded to the carrier board. A sealant is filled in a gap between surrounding walls of the opening and the die at a height lower than the die to fixedly place the die within the opening and to leave a non-active surface of the die exposed.
    Type: Application
    Filed: August 16, 2017
    Publication date: November 30, 2017
    Inventors: TING-HAO LIN, YI-FAN KAO, SHUO-HSUN CHANG, YU-TE LU, KUO-CHUN HUANG
  • Patent number: 9831167
    Abstract: A compound carrier board structure of Flip-Chip Chip-Scale Package and manufacturing method thereof provides a baseplate with an opening bonded to a carrier board in order to form a compound carrier board structure. A die is placed in the opening and bonded to the carrier board. A sealant is filled in a gap between surrounding walls of the opening and the die at a height lower than the die to fixedly place the die within the opening and to leave a non-active surface of the die exposed.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: November 28, 2017
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Ting-Hao Lin, Yi-Fan Kao, Shuo-Hsun Chang, Yu-Te Lu, Kuo-Chun Huang
  • Patent number: 9754870
    Abstract: A compound carrier board structure of Flip-Chip Chip-Scale Package and manufacturing method thereof provides a baseplate with a penetrating rectangular opening bonded to a non-conductive film then a carrier board in order to form a compound carrier board structure. The baseplate is constructed with a low Thermal Expansion Coefficient material.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: September 5, 2017
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Ting-Hao Lin, Yi-Fan Kao, Shuo-Hsun Chang, Yu-Te Lu, Kuo-Chun Huang
  • Patent number: 9406641
    Abstract: A compound carrier board structure of Flip-Chip Chip-Scale Package and manufacturing method thereof provides a baseplate having a flip region with a through-opening and bonding to a Non-conductive Film to bond to a carrier board in order to form a compound carrier board structure. The baseplate is constructed with a low Thermal Expansion Coefficient material.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: August 2, 2016
    Assignee: Kinsus Interconnect Technology Corp.
    Inventors: Ting-Hao Lin, Yi-Fan Kao, Shuo-Hsun Chang, Yu-Te Lu, Kuo-Chun Huang
  • Publication number: 20160197033
    Abstract: A compound carrier board structure of Flip-Chip Chip-Scale Package and manufacturing method thereof provides a baseplate with a penetrating rectangular opening bonded to a non-conductive film then a carrier board in order to form a compound carrier board structure. The baseplate is constructed with a low Thermal Expansion Coefficient material.
    Type: Application
    Filed: March 16, 2016
    Publication date: July 7, 2016
    Inventors: TING-HAO LIN, YI-FAN KAO, SHUO-HSUN CHANG, YU-TE LU, KUO-CHUN HUANG
  • Patent number: 9370110
    Abstract: A method of manufacturing a multilayer substrate structure includes the steps of pre-treatment, pressing and post-treatment. A carrier plate provided with a circuit pattern layer is pressed against a plastic sheet. An interlayer connection pad is formed by drilling and filling the lower surface of the plastic sheet. The carrier plate, the plastic sheet, another plastic sheet and another carrier plate with a circuit pattern layer are pressed together, and then drilled/filled to form a multilayer stacked structure such that the two circuit pattern layers are indirectly and electrically connected to the interlayer connection pad, respectively. Therefore, it is possible to overcome the problem due to alignment tolerance by using the interlayer connection pad wider than alignment tolerance, and stacking the circuit layers, each having much finer line and smaller pitch.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: June 14, 2016
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Ting-Hao Lin, Yu-Te Lu
  • Patent number: 9301405
    Abstract: A method for manufacturing microthrough-hole includes electroplating a metal layer on a carrier plate, patterning the metal layer to form a first circuit having copper pads, covering the first circuit with a photoresist layer and not covering the copper window between two of the copper pads, etching the metal layer beneath the copper window and removing the photoresist layer, sequentially forming an insulation layer and a second circuit on the first circuit and the copper window, the second circuit layer having a stop pad corresponding to the copper window, removing the carrier plate, upward drilling through the insulation layer between the stop pad and the copper window to form a microthrough-hole beneath the stop pad, and forming a conductive layer in the microthrough-hole to form the microthrough-hole connecting the first and second circuits. The microthrough-hole and its occupied area is greatly reduced, thereby achieving high circuit density.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: March 29, 2016
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Ting-Hao Lin, Yi-Fan Kao, Jaen-Don Lan, Yu-Te Lu, Yung-Lin Chia, An-Ping Tseng
  • Patent number: 9198296
    Abstract: A double sided board with buried element and a method for manufacturing the same are disclosed. At least one buried element is fixed on a dielectric layer and embedded in an insulation layer. First and second electrical circuits are formed on upper and lower surfaces of the insulation layer, respectively. At least one through-hole is formed in the insulation layer and filled with a conductive layer to electrically connect the first and the second electrical circuits. The dielectric layer beneath the buried element and the insulation layer above the buried element are provided with at least one opening, respectively, which is filled with the conductive layer, thereby connecting the conductive layer and external circuits or electrical elements. Additionally, the first and second electrical circuits are covered with first and second solder masks, respectively, so as to avoid environmental effect and improve preciseness of the circuits.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: November 24, 2015
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Ting-Hao Lin, Yu-Te Lu, Fu-Song Chen
  • Publication number: 20150282306
    Abstract: A multilayer substrate structure includes a first plastic sheet, a second plastic sheet, a first circuit pattern layer, a second circuit pattern layer, and an interlayer connection pad. A first connection plug connected to the interlayer connection pad fills in a first opening of a first plastic sheet and is connected to a first connection pad of the first circuit pattern layer. A second connection plug fills a second opening of the second plastic sheet and is connected to a second connection pad of the second circuit pattern layer such that the second circuit pattern layer is electrically connected to the first circuit pattern layer via the interlayer connection pad. Therefore, even if there is little offset, it is possible to overcome the alignment tolerance and assure electrical connection between the circuit layers as desired.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 1, 2015
    Applicant: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Ting-Hao Lin, Yu-Te Lu
  • Publication number: 20150282333
    Abstract: A method of manufacturing a multilayer substrate structure includes the steps of pre-treatment, pressing and post-treatment. A carrier plate provided with a circuit pattern layer is pressed against a plastic sheet. An interlayer connection pad is formed by drilling and filling the lower surface of the plastic sheet. The carrier plate, the plastic sheet, another plastic sheet and another carrier plate with a circuit pattern layer are pressed together, and then drilled/filled to form a multilayer stacked structure such that the two circuit pattern layers are indirectly and electrically connected to the interlayer connection pad, respectively. Therefore, it is possible to overcome the problem due to alignment tolerance by using the interlayer connection pad wider than alignment tolerance, and stacking the circuit layers, each having much finer line and smaller pitch.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 1, 2015
    Applicant: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Ting-Hao Lin, Yu-Te Lu
  • Patent number: 9095085
    Abstract: Disclosed is a method of manufacturing a stacked multilayer structure, including the steps of forming a first circuit layer with bumps on a substrate, punching an aluminum plate to form recesses corresponding to the bumps, forming openings in a plastic film including a glass fiber layer corresponding to the bumps, pressing the aluminum plate, the plastic film and the substrate, removing the aluminum plate, polishing to level the resulting surface, forming a second circuit layer connected to the first circuit layer, and finally removing the substrate to form the stacked multilayer structure. Because the glass fiber layer in the plastic film is not exposed after polishing, the thickness of the dielectric layer is uniform and the reliability of the circuit layer is improved so as to increase the yield.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: July 28, 2015
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Ting-Hao Lin, Yu-Te Lu, De-Hao Lu