Patents by Inventor Yu-Te Wang

Yu-Te Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120317
    Abstract: A fan-out semiconductor device includes stacked semiconductor dies having die bond pads arranged in columns exposed at a sidewall of the stacked semiconductor dies. The stacked dies are encapsulated in a photo imageable dielectric (PID) material, which is developed to form through-hole cavities that expose the columns of bond pads of each die at the sidewall. The through-hole cavities are plated or filled with an electrical conductor to form conductive through-holes coupling die bond pads within the columns to each other.
    Type: Application
    Filed: July 13, 2023
    Publication date: April 11, 2024
    Applicant: Western Digital Technologies, Inc.
    Inventors: Cheng-Hsiung Yang, Chien Te Chen, Cong Zhang, Ching-Chuan Hsieh, Yu-Ying Tan, Juan Zhou, Ai-wen Wang, Yih-Fran Lee, Yu-Wen Huang
  • Patent number: 11940645
    Abstract: A front light module includes a reflective display device, a front light guide, and a light emitting unit plate. The front light guide plate includes a micro-structure. The micro-structure has a first angle between a surface thereof close to the light emitting unit and an upper surface of the front light guide plate. The micro-structure has a second angle between a surface thereof away from the light emitting unit and the upper surface of the front light guide plate. The micro-structure has a third angle between the surface thereof close to the light emitting unit and the surface thereof away from the light emitting unit. The first angle is within a range between 30 degrees and 60 degrees, the second angle is within a range between 30 degrees and 59 degrees, and the third angle is greater than 90 degrees.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: March 26, 2024
    Assignee: DARWIN PRECISIONS CORPORATION
    Inventors: Chun-Te Wang, Yu-Shan Shen, Yen-Lung Chen
  • Publication number: 20240085985
    Abstract: This document relates to employing tongue gestures to control a computing device, and training machine learning models to detect tongue gestures. One example relates to a method or technique that can include receiving one or more motion signals from an inertial sensor. The method or technique can also include detecting a tongue gesture based at least on the one or more motion signals, and outputting the tongue gesture.
    Type: Application
    Filed: December 6, 2022
    Publication date: March 14, 2024
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Raymond Michael WINTERS, IV, Tan GEMICIOGLU, Thomas Matthew GABLE, Yu-Te WANG, Ivan Jelev TASHEV
  • Patent number: 11916314
    Abstract: A mobile device includes a housing, a first radiation element, a second radiation element, a third radiation element, a first switch element, and a second switch element. The first radiation element has a first feeding point. The second radiation element has a second feeding point. The first radiation element, the second radiation element, and the third radiation element are distributed over the housing. The first switch element is closed or open, so as to selectively couple the first radiation element to the third radiation element. The second switch element is closed or open, so as to selectively couple the second radiation element to the third radiation element. An antenna structure is formed by the first radiation element, the second radiation element, and the third radiation element.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: February 27, 2024
    Assignee: HTC Corporation
    Inventors: Cheng-Hung Lin, Szu-Po Wang, Chia-Te Chien, Chun-Chieh Wang, Kang-Ling Li, Chun-Hsien Lee, Yu-Chieh Chiu
  • Patent number: 11916155
    Abstract: An optoelectronic package and a method for producing the optoelectronic package are provided. The optoelectronic package includes a carrier, a photonic device, a first encapsulant and a second encapsulant. The photonic device is disposed on the carrier. The first encapsulant covers the carrier and is disposed around the photonic device. The second encapsulant covers the first encapsulant and the photonic device. The first encapsulant has a topmost position and a bottommost position, and the topmost position is not higher than a surface of the photonic device.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: February 27, 2024
    Assignees: LITE-ON OPTO TECHNOLOGY (CHANGZHOU) CO., LTD., LITE-ON TECHNOLOGY CORPORATION
    Inventors: Chien-Hsiu Huang, Bo-Jhih Chen, Kuo-Ming Chiu, Meng-Sung Chou, Wei-Te Cheng, Kai-Chieh Liang, Yun-Ta Chen, Yu-Han Wang
  • Publication number: 20230190196
    Abstract: A force-controlled electroencephalogram (EEG) monitoring device maintains a constant pressure between electrodes and the scalp of a user thereby increasing user comfort. Arms on the EEG monitoring device position the electrodes in contact with specific regions on the head of the user. The dimension, shape, and curvature of the arms affect the amount of force with which an electrode is held in contact with the user's scalp. The amount of pressure may be different for different regions of the user's head to achieve a balance between comfort and conductivity. The amount of pressure may be further modulated by the use of spring-loaded electrode holders that allow an electrode to move relative to the holder. To further improve user comfort, the tips of the electrodes may be hemispherical rather than pointed. The EEG monitoring device can be used as input for a brain-computer interface (BCI).
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Inventors: Yu-Te WANG, Ivan Jelev TASHEV, Teresa Elizabeth LASCALA
  • Publication number: 20230190175
    Abstract: A semi-dry electrode combines advantages of wet electrodes and dry electrodes by use of a rotatable ball to apply a conductive gel at the tip of the electrode in a manner similar to how a ballpen applies ink. A reservoir in the semi-dry electrode contains the conductive gel that is applied by the ball to the skin of the user. This creates a thin film of conductive gel at the tip of the semi-dry electrode which reduces impedance and increases the signal-to-noise (SNR) ratio. Directly applying the conductive gel from within the electrode itself reduces mess and improves user convenience. The semi-dry electrode may be used in a lightweight electroencephalography (EEG) monitoring device to detect brain activity. The brain activity may be used as input for a brain-computer interface (BCI).
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Inventors: Yu-Te WANG, Ivan Jelev TASHEV
  • Patent number: 11630520
    Abstract: A system for vibration-driven sensing may include a wearable dimensioned to be donned by a user of an artificial reality system. The system may also include a vibration sensor that is incorporated into the wearable and generates an electrical response that corresponds to a vibration detected at the wearable. The system may further include at least one processing device communicatively coupled to the vibration sensor. The processing device may determine, based at least in part on the electrical response generated by the vibration sensor, that the user has made a specific gesture with at least one body part. In response to this determination, the processing device may generate an input command for the artificial reality system based at least in part on the specific gesture made by the user. Various other systems and methods are also disclosed.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: April 18, 2023
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Hrvoje Benko, Wolf Kienzle, Neil Weiss, Yu-Te Wang, Yanjun Ma, David R Perek
  • Patent number: 11467662
    Abstract: A brain computer interface system includes a wearable interface, an eye tracking device, and a client device for determining what object a user is looking at on an electronic display. The client device determines a region on the electronic display based on an estimated user gaze direction received from the eye tracking device. For each virtual object in the gaze region, the client device displays a visual stimulus with a unique frequency. The client device receives from the wearable interface an electrical potential signal measured at the user's brain and evoked by a visual stimulus on the electronic display. The client device identifies the object in the gaze region with a stimulus frequency matching a frequency derived from the potential signal, and executes instructions relating to the object.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: October 11, 2022
    Assignee: Meta Platforms, Inc.
    Inventors: Yu-Te Wang, Mark Allan Chevillet
  • Patent number: 11366527
    Abstract: A system for vibration-driven sensing may include a wearable dimensioned to be donned by a user of an artificial reality system. The system may also include a vibration sensor that is incorporated into the wearable and generates an electrical response that corresponds to a vibration detected at the wearable. The system may further include at least one processing device communicatively coupled to the vibration sensor. The processing device may determine, based at least in part on the electrical response generated by the vibration sensor, that the user has made a specific gesture with at least one body part. In response to this determination, the processing device may generate an input command for the artificial reality system based at least in part on the specific gesture made by the user. Various other systems and methods are also disclosed.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: June 21, 2022
    Assignee: Facebook Technologies, LLC
    Inventors: Hrvoje Benko, Wolf Kienzle, Neil Weiss, Yu-Te Wang, Yanjun Ma, David R. Perek
  • Patent number: 11093033
    Abstract: A brain computer interface system includes a wearable interface, an eye tracking device, and a client device for determining what object a user is looking at on an electronic display. The client device determines a region on the electronic display based on an estimated user gaze direction received from the eye tracking device. For each virtual object in the gaze region, the client device displays a visual stimulus with a unique frequency. The client device receives from the wearable interface an electrical potential signal measured at the user's brain and evoked by a visual stimulus on the electronic display. The client device identifies the object in the gaze region with a stimulus frequency matching a frequency derived from the potential signal, and executes instructions relating to the object.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: August 17, 2021
    Assignee: Facebook, Inc.
    Inventors: Yu-Te Wang, Mark Allan Chevillet
  • Patent number: 10788897
    Abstract: A system for vibration-driven sensing may include a wearable dimensioned to be donned by a user of an artificial reality system. The system may also include a vibration sensor that is incorporated into the wearable and generates an electrical response that corresponds to a vibration detected at the wearable. The system may further include at least one processing device communicatively coupled to the vibration sensor. The processing device may determine, based at least in part on the electrical response generated by the vibration sensor, that the user has made a specific gesture with at least one body part. In response to this determination, the processing device may generate an input command for the artificial reality system based at least in part on the specific gesture made by the user. Various other systems and methods are also disclosed.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: September 29, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Hrvoje Benko, Wolf Kienzle, Neil Weiss, Yu-Te Wang, Yanjun Ma, David R. Perek
  • Publication number: 20130127708
    Abstract: Techniques and systems are disclosed for implementing a brain-computer interface. In one aspect, a system for implementing a brain-computer interface includes a stimulator to provide at least one stimulus to a user to elicit at least one electroencephalogram (EEG) signal from the user. An EEG acquisition unit is in communication with the user to receive and record the at least one EEG signal elicited from the user. Additionally, a data processing unit is in wireless communication with the EEG acquisition unit to receive and process the recorded at least one EEG signal to perform at least one of: sending a feedback signal to the user, or executing an operation on the data processing unit.
    Type: Application
    Filed: May 27, 2011
    Publication date: May 23, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Tzyy-Ping Jung, Yi-Jun Wang, Yu-Te Wang