Patents by Inventor Yu Wei Chou

Yu Wei Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240147711
    Abstract: The present disclosure provides a memory device, a semiconductor device, and a method of operating a memory device. A memory device includes a memory cell, a bit line, a word line, a select transistor, a fuse element, and a heater. The bit line is connected to the memory cell. The word line is connected to the memory cell. The select transistor is disposed in the memory cell. A gate of the select transistor is connected to the word line. The fuse element is disposed in the memory cell. The fuse element is connected to the bit line and the select transistor. The heater is configured to heat the fuse element.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: PERNG-FEI YUH, YIH WANG, MENG-SHENG CHANG, JUI-CHE TSAI, KU-FENG LIN, YU-WEI LIN, KEH-JENG CHANG, CHANSYUN DAVID YANG, SHAO-TING WU, SHAO-YU CHOU, PHILEX MING-YAN FAN, YOSHITAKA YAMAUCHI, TZU-HSIEN YANG
  • Patent number: 11971601
    Abstract: An imaging lens assembly includes a plurality of optical elements and an accommodating assembly, wherein the accommodating assembly is for containing the optical elements. The accommodating assembly includes a conical-shaped light blocking sheet and a lens barrel. The conical-shaped light blocking sheet includes an out-side portion and a conical portion, and the conical portion is connected to the out-side portion. The conical portion includes a conical structure tapered from the out-side portion toward one of an object-side and an image-side along the optical axis. The lens barrel is disposed on one side of the conical portion. The optical elements include a most object-side optical element, a most image-side optical element and at least one optical element. The conical structure of the conical-shaped light blocking sheet is physically contacted with only one of the lens barrel, the most object-side optical element and the most image-side optical element.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: April 30, 2024
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Yu-Chen Lai, Chih-Wei Cheng, Ming-Ta Chou, Ming-Shun Chang
  • Publication number: 20240133421
    Abstract: An electronic device includes a monitor stand, a hinge mechanism, and an operation element. The hinge mechanism includes a back plate, a speed reduction assembly, and a friction assembly. The back plate is fixed to the monitor stand. The speed reduction assembly includes an input plate and a speed reduction member. The speed reduction member is arranged on the input plate. The friction assembly is arranged between the back plate and the input plate. The operation element is connected to the speed reduction member. A rotation center of the operation element coincides with an axis of the back plate and the speed reduction member are coaxially arranged.
    Type: Application
    Filed: January 17, 2023
    Publication date: April 25, 2024
    Inventors: Chih-Wei KUO, Yu-Chun HUNG, Che-Yen CHOU, Chen-Wei TSAI, Hsiang-Wen HUANG
  • Patent number: 11948938
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device comprising a source and drain region arranged within a substrate. A conductive gate is disposed over a doped region of the substrate. A gate dielectric layer is disposed between the source region and the drain region and separates the conductive gate from the doped region. A bottommost surface of the gate dielectric layer is below a topmost surface of the substrate. First and second sidewall spacers are arranged along first and second sides of the conductive gate, respectively. An inner portion of the first sidewall spacer and an inner portion of the second sidewall spacer respectively cover a first and second top surface of the gate dielectric layer. A drain extension region and a source extension region respectively separate the drain region and the source region from the gate dielectric layer.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Ta-Wei Lin, Hsiao-Chin Tuan, Alexander Kalnitsky, Kong-Beng Thei, Shi-Chuang Hsiao, Yu-Hong Kuo
  • Publication number: 20240087953
    Abstract: A semiconductor device and method of formation are provided. The semiconductor device comprises a silicide layer over a substrate, a metal plug in an opening defined by a dielectric layer over the substrate, a first metal layer between the metal plug and the dielectric layer and between the metal plug and the silicide layer, a second metal layer over the first metal layer, and an amorphous layer between the first metal layer and the second metal layer.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: Yu-Hung Lin, Sheng-Hsuan Lin, Chih-Wei Chang, You-Hua Chou
  • Publication number: 20240084445
    Abstract: A leak check is performed on a semiconductor wafer processing tool that includes a process chamber and process gas lines, and a semiconductor wafer is processed using the semiconductor wafer processing tool if the leak check passes. Each gas line includes a mass flow controller (MFC) and normally closed valves including an upstream and downstream valves upstream and downstream of the MFC. Leak checking includes: leak checking up to the downstream valves of the gas lines with the upstream valves closed and the downstream valves of the gas lines closed; and leak checking up to the upstream valve of each the process gas line with the upstream valves of the of the process gas lines closed and with the downstream valve of the of the process gas line being leak checked open and the downstream valve of every other process gas line closed.
    Type: Application
    Filed: January 4, 2023
    Publication date: March 14, 2024
    Inventors: Chih-Wei Chou, Yuan-Hsin Chi, Chih-Hao Yang, Hung-Chih Wang, Yu-Chi Liu, Sheng-Yuan Lin
  • Publication number: 20240071833
    Abstract: The present disclosure relates to a semiconductor device with a hybrid fin-dielectric region. The semiconductor device includes a substrate, a source region and a drain region laterally separated by a hybrid fin-dielectric (HFD) region. A gate electrode is disposed above the HFD region and the HFD region includes a plurality of fins covered by a dielectric and separated from the source region and the drain region by the dielectric.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 29, 2024
    Inventors: Yi-Huan Chen, Huan-Chih Yuan, Yu-Chang Jong, Scott Yeh, Fei-Yun Chen, Yi-Hao Chen, Ting-Wei Chou
  • Patent number: 11312882
    Abstract: A slurry solution for a Chemical Mechanical Polishing (CMP) process includes a wetting agent, a stripper additive that comprises at least one of: N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), sulfolane, and dimethylformamide (DMF), and an oxidizer additive comprising at least one of: hydrogen peroxide (H2O2), ammonium persulfate ((NH4)2S2O8), peroxymonosulfuric acid (H2SO5), ozone (O3) in de-ionized water, and sulfuric acid (H2SO4).
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: April 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Yin Lin, Wen-Kuei Liu, Teng-Chun Tsai, Shen-Nan Lee, Kuo-Cheng Lien, Chang-Sheng Lin, Yu-Wei Chou
  • Patent number: 11011385
    Abstract: A method of manufacturing an integrated circuit device is provided. A first feature, which has a first susceptibility to damage by chemical mechanical processing (CMP), is formed at a first height as measured from an upper surface of the substrate. A second feature, which has a second susceptibility to damage by the CMP, is formed at a second height as measured from the upper surface of the substrate and is laterally spaced from the first feature by a recess. The second height is greater than the first height, and the second susceptibility is less than the first susceptibility. A sacrificial coating is formed in the recess over an uppermost surface of the first feature. CMP is performed to remove a first portion of the sacrificial coating and expose an upper surface of the second feature while leaving a second portion of the sacrificial coating in place over the first feature.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: May 18, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Kuei Liu, Teng-Chun Tsai, Kuo-Yin Lin, Shen-Nan Lee, Yu-Wei Chou, Kuo-Cheng Lien, Chang-Sheng Lin, Chih-Chang Hung, Yung-Cheng Lu
  • Publication number: 20200407594
    Abstract: A slurry solution for a Chemical Mechanical Polishing (CMP) process includes a wetting agent, a stripper additive that comprises at least one of: N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), sulfolane, and dimethylformamide (DMF), and an oxidizer additive comprising at least one of: hydrogen peroxide (H2O2), ammonium persulfate ((NH4)2S2O8), peroxymonosulfuric acid (H2SO5), ozone (O3) in de-ionized water, and sulfuric acid (H2SO4).
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Inventors: Kuo-Yin Lin, Wen-Kuei Liu, Teng-Chun Tsai, Shen-Nan Lee, Kuo-Cheng Lien, Chang-Sheng Lin, Yu-Wei Chou
  • Patent number: 10774241
    Abstract: A slurry solution for a Chemical Mechanical Polishing (CMP) process includes a wetting agent, a stripper additive that comprises at least one of: N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), sulfolane, and dimethylformamide (DMF), and an oxidizer additive comprising at least one of: hydrogen peroxide (H2O2), ammonium persulfate ((NH4)2S2O8), peroxymonosulfuric acid (H2SO5), ozone (O3) in de-ionized water, and sulfuric acid (H2SO4).
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: September 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Kuo-Yin Lin, Wen-Kuei Liu, Teng-Chun Tsai, Shen-Nan Lee, Kuo-Cheng Lien, Chang-Sheng Lin, Yu-Wei Chou
  • Patent number: 9852899
    Abstract: Some embodiments are directed to a wafer polishing tool. The wafer polishing tool includes a first polisher, a second polisher downstream of the first polisher, a third polisher downstream of the second polisher, and a fourth polisher downstream of the third polisher. The first polisher receives a wafer having a front side and a back side with integrated circuit component devices disposed on the front side of the wafer, and polishes a center region on the back side of the wafer. The second polisher receives the wafer via transporting equipment and buffs the center region of the back side of the wafer. The third polisher receives the wafer via the transporting equipment and polishes a back side edge region of the wafer. The fourth polisher receives the wafer via the transporting equipment and buffs the back side edge region of the wafer.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: December 26, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shen-Nan Lee, Teng-Chun Tsai, Hsin-Hsien Lu, Chang-Sheng Lin, Kuo-Cheng Lien, Kuo-Yin Lin, Wen-Kuei Liu, Yu-Wei Chou
  • Publication number: 20170352548
    Abstract: A method of manufacturing an integrated circuit device is provided. A first feature, which has a first susceptibility to damage by chemical mechanical processing (CMP), is formed at a first height as measured from an upper surface of the substrate. A second feature, which has a second susceptibility to damage by the CMP, is formed at a second height as measured from the upper surface of the substrate and is laterally spaced from the first feature by a recess. The second height is greater than the first height, and the second susceptibility is less than the first susceptibility. A sacrificial coating is formed in the recess over an uppermost surface of the first feature. CMP is performed to remove a first portion of the sacrificial coating and expose an upper surface of the second feature while leaving a second portion of the sacrificial coating in place over the first feature.
    Type: Application
    Filed: August 25, 2017
    Publication date: December 7, 2017
    Inventors: Wen-Kuei Liu, Teng-Chun Tsai, Kuo-Yin Lin, Shen-Nan Lee, Yu-Wei Chou, Kuo-Cheng Lien, Chang-Sheng Lin, Chih-Chang Hung, Yung-Cheng Lu
  • Patent number: 9748109
    Abstract: An IC device manufacturing process effectuates a planar recessing of material that initially varies in height across a substrate. The method includes forming a polymer coating, CMP to form a planar surface, then plasma etching to effectuate a planar recessing of the polymer coating. The material can be recessed together with the polymer coating, or subsequently with the recessed polymer coating providing a mask. Any of the material above a certain height is removed. Structures that are substantially below that certain height can be protected from contamination and left intact. The polymer can be a photoresist. The polymer can be provided with suitable adhesion and uniformity for the CMP process through a two-step baking process and by exhausting the baking chamber from below the substrate.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: August 29, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Kuei Liu, Teng-Chun Tsai, Kuo-Yin Lin, Shen-Nan Lee, Yu-Wei Chou, Kuo-Cheng Lien, Chang-Sheng Lin, Chih-Chang Hung, Yung-Cheng Lu
  • Patent number: 9746310
    Abstract: A method for measuring an implant dosage distribution of a semiconductor sample is provided. The method includes generating a photomodulation effect in a three-dimensional structure of the semiconductor sample and measuring a reflection information of the three-dimensional structure. A geometry information of the three-dimensional structure of the semiconductor sample is obtained. The geometry information of the three-dimensional structure is converted into an estimated reflective data. The reflection information is compared with the estimated reflective data to determine the implant dosage distribution of the three-dimensional structure of the semiconductor sample.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: August 29, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ying-Chieh Hung, Yi-Hung Lin, Yu-Wei Chou
  • Publication number: 20170158914
    Abstract: A slurry solution for a Chemical Mechanical Polishing (CMP) process includes a wetting agent, a stripper additive that comprises at least one of: N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), sulfolane, and dimethylformamide (DMF), and an oxidizer additive comprising at least one of: hydrogen peroxide (H2O2), ammonium persulfate ((NH4)2S2O8), peroxymonosulfuric acid (H2SO5), ozone (O3) in de-ionized water, and sulfuric acid (H2SO4).
    Type: Application
    Filed: February 13, 2017
    Publication date: June 8, 2017
    Inventors: Kuo-Yin Lin, Wen-Kuei Liu, Teng-Chun Tsai, Shen-Nan Lee, Kuo-Cheng Lien, Chang-Sheng Lin, Yu-Wei Chou
  • Publication number: 20170131084
    Abstract: A method for measuring an implant dosage distribution of a semiconductor sample is provided. The method includes generating a photomodulation effect in a three-dimensional structure of the semiconductor sample and measuring a reflection information of the three-dimensional structure. A geometry information of the three-dimensional structure of the semiconductor sample is obtained. The geometry information of the three-dimensional structure is converted into a estimated reflective data. The reflection information is compared with the estimated reflective data to determine the implant dosage distribution of the three-dimensional structure of the semiconductor sample.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 11, 2017
    Inventors: Ying-Chieh HUNG, Yi-Hung LIN, Yu-Wei CHOU
  • Publication number: 20170125237
    Abstract: Some embodiments are directed to a wafer polishing tool. The wafer polishing tool includes a first polisher, a second polisher downstream of the first polisher, a third polisher downstream of the second polisher, and a fourth polisher downstream of the third polisher. The first polisher receives a wafer having a front side and a back side with integrated circuit component devices disposed on the front side of the wafer, and polishes a center region on the back side of the wafer. The second polisher receives the wafer via transporting equipment and buffs the center region of the back side of the wafer. The third polisher receives the wafer via the transporting equipment and polishes a back side edge region of the wafer. The fourth polisher receives the wafer via the transporting equipment and buffs the back side edge region of the wafer.
    Type: Application
    Filed: January 17, 2017
    Publication date: May 4, 2017
    Inventors: Shen-Nan Lee, Teng-Chun Tsai, Hsin-Hsien Lu, Chang-Sheng Lin, Kuo-Cheng Lien, Kuo-Yin Lin, Wen-Kuei Liu, Yu-Wei Chou
  • Patent number: 9567493
    Abstract: A method for performing a Chemical Mechanical Polishing (CMP) process includes applying a CMP slurry solution to a surface of a hardened fluid material on a substrate, the solution comprising an additive to change a bonding structure on the surface of the hardened fluid material. The method further includes polishing the surface of the hardened fluid material with a polishing head.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Yin Lin, Wen-Kuei Liu, Teng-Chun Tsai, Shen-Nan Lee, Kuo-Cheng Lien, Chang-Sheng Lin, Yu-Wei Chou
  • Patent number: 9559021
    Abstract: A wafer polishing process includes polishing a central area on the back side of a wafer, polishing a peripheral area on the back side of the wafer, buffing the central area, and buffing the peripheral area. The process can significantly reduce scratch-related wafer breakage, can correct focus spots on wafers, and can replace cleaning processes that use chemical etchants. Polishing and buffing can include polishing and buffing the bevel region. Further improvements include polishing with abrasive pads having a soft backing, polishing or buffing with pads having relatively soft abrasive particles, polishing or buffing with abrasive pads made from abrasive particles that have been sorted and selected for regularity of shape, irrigating the surface being polished or buffed with an aqueous solution that includes a friction-reducing agent, and buffing with abrasive pads having 20k or finer grit or non-abrasive pads.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: January 31, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shen-Nan Lee, Teng-Chun Tsai, Hsin-Hsien Lu, Chang-Sheng Lin, Kuo-Cheng Lien, Kuo-Yin Lin, Wen-Kuei Liu, Yu-Wei Chou