Patents by Inventor Yu-Yen Hsu

Yu-Yen Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939431
    Abstract: The present invention relates to a composition comprising an amino acid-modified polymer, a carboxypolysaccharide, and may further include a metal ion for anti-adhesion and vector application. More specifically, the invention relates to a thermosensitive composition having enhanced mechanical and improved water-erosion resistant properties for efficiently preventing tissue adhesions and can serve as a vector with bio-compatible, bio-degradable/absorbable, and in-vivo sustainable properties.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: March 26, 2024
    Assignee: PROVIEW-MBD BIOTECH CO., LTD.
    Inventors: Yu-Chia Chang, Yunn-Kuen Chang, Wen-Yen Huang, Ging-Ho Hsiue, Hsieh-Chih Tsai, Shuian-Yin Lin, Nai-Sheng Hsu, Tzu-Yu Lin
  • Patent number: 11939432
    Abstract: Synthetic amino acid-modified polymers and methods of making the same and using the same are disclosed. The synthetic amino acid-modified polymers possess distinct thermosensitive, improved water-erosion resistant, and enhanced mechanical properties, and are suitable of reducing or preventing formation of postoperative tissue adhesions. Additionally, the amino acid-modified polymers can also be used as a vector to deliver pharmaceutically active agents.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: March 26, 2024
    Assignee: PROVIEW-MBD BIOTECH CO., LTD.
    Inventors: Yu-Chia Chang, Yunn-Kuen Chang, Wen-Yen Huang, Ging-Ho Hsiue, Hsieh-Chih Tsai, Shuian-Yin Lin, Nai-Sheng Hsu, Tzu-Yu Lin
  • Patent number: 10497557
    Abstract: The present disclosure relates to a method and apparatus for performing a dry plasma procedure, while mitigating internal contamination of a semiconductor substrate. In some embodiments, the apparatus includes a semiconductor processing tool having a dry process stage with one or more dry process elements that perform a dry plasma procedure on a semiconductor substrate received from an input port. A wafer transport system transports the semiconductor substrates from the dry process stage to a wet cleaning stage located downstream of the dry process stage. The wet cleaning stage has one or more wet cleaning elements that perform a wet cleaning procedure to remove contaminants from a surface of the semiconductor substrates before the semiconductor substrate is provided to an output port, thereby improving wafer manufacturing quality.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: December 3, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Yen Ku, Tsai-Pao Su, Wen-Chang Tsai, Chia-Wen Li, Yu-Yen Hsu
  • Patent number: 9263337
    Abstract: A system and method for etching a substrate is provided. An embodiment comprises utilizing an inert carrier gas in order to introduce a liquid etchant to a substrate. The inert carrier gas may prevent undesirable chemical reactions from taking place during the etching process, thereby helping to reduce the number of defects that occur to the substrate and other structures during the etching process.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: February 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Li Chou, Shao-Yen Ku, Chi-Yun Tseng, Yu-Yen Hsu, Tsai-Pao Su, Hobin Chen, Sheng-Chi Shih
  • Publication number: 20150255270
    Abstract: The present disclosure relates to a method and apparatus for performing a dry plasma procedure, while mitigating internal contamination of a semiconductor substrate. In some embodiments, the apparatus includes a semiconductor processing tool having a dry process stage with one or more dry process elements that perform a dry plasma procedure on a semiconductor substrate received from an input port. A wafer transport system transports the semiconductor substrates from the dry process stage to a wet cleaning stage located downstream of the dry process stage. The wet cleaning stage has one or more wet cleaning elements that perform a wet cleaning procedure to remove contaminants from a surface of the semiconductor substrates before the semiconductor substrate is provided to an output port, thereby improving wafer manufacturing quality.
    Type: Application
    Filed: May 20, 2015
    Publication date: September 10, 2015
    Inventors: Shao-Yen Ku, Tsai-Pao Su, Wen-Chang Tsai, Chia-Wen Li, Yu-Yen Hsu
  • Patent number: 9117760
    Abstract: A wet chemical processing method and apparatus for use in semiconductor manufacturing and in other applications, is provided. The method and apparatus provide for energizing a processing liquid such as a cleaning or etching liquid using ultrasonic, megasonic or other energy waves or by combining the liquid with a pressurized gas to form a pressurized spray, or using both. The energized, pressurized fluid is directed to a substrate surface using a fluid delivery system and overcomes any surface tensions associated with liquids, solids, or air and enables the processing liquid to completely fill any holes such as contact holes, via holes or trenches, formed on the semiconductor substrate.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: August 25, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Yen Hsu, Shao-Yen Ku, Chun-Li Chou, Tsai-Pao Su
  • Patent number: 9064807
    Abstract: The present disclosure relates to a method and apparatus for performing a dry plasma procedure, while mitigating internal contamination of a semiconductor substrate. In some embodiments, the apparatus includes a semiconductor processing tool having a dry process stage with one or more dry process elements that perform a dry plasma procedure on a semiconductor substrate received from an input port. A wafer transport system transports the semiconductor substrates from the dry process stage to a wet cleaning stage located downstream of the dry process stage. The wet cleaning stage has one or more wet cleaning elements that perform a wet cleaning procedure to remove contaminants from a surface of the semiconductor substrates before the semiconductor substrate is provided to an output port. The wet cleaning procedure prior removes internal contaminants of the dry process procedure from the semiconductor substrate and thereby improves wafer manufacturing quality.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 23, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Yen Ku, Tsai-Pao Su, Wen-Chang Tsai, Chia-Wen Li, Yu-Yen Hsu
  • Patent number: 9048089
    Abstract: Some embodiments relate to methods and apparatus for providing a homogeneous wafer temperature profile in a wafer cleaning tool without introducing unwanted particles onto the wafer. In some embodiments, a disclosed wafer cleaning tool has a processing chamber configured to house a semiconductor wafer. A dispensing arm provides a high temperature cleaning solution to the semiconductor wafer. A heating cup is located within the processing chamber at a position that is around the perimeter of the semiconductor wafer. The heating cup generates heat that increases the temperature of outer edges of the semiconductor wafer by a greater amount than a temperature of a center of the semiconductor wafer, thereby homogenizing an internal temperature profile of the semiconductor wafer.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: June 2, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Yen Hsu, Shao-Yen Ku, Chun-Li Chou
  • Publication number: 20140242804
    Abstract: The present disclosure relates to a method and apparatus for performing a dry plasma procedure, while mitigating internal contamination of a semiconductor substrate. In some embodiments, the apparatus includes a semiconductor processing tool having a dry process stage with one or more dry process elements that perform a dry plasma procedure on a semiconductor substrate received from an input port. A wafer transport system transports the semiconductor substrates from the dry process stage to a wet cleaning stage located downstream of the dry process stage. The wet cleaning stage has one or more wet cleaning elements that perform a wet cleaning procedure to remove contaminants from a surface of the semiconductor substrates before the semiconductor substrate is provided to an output port. The wet cleaning procedure prior removes internal contaminants of the dry process procedure from the semiconductor substrate and thereby improves wafer manufacturing quality.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Shao-Yen Ku, Tsai-Pao Su, Wen-Chang Tsai, Chia-Wen Li, Yu-Yen Hsu
  • Publication number: 20140224785
    Abstract: Some embodiments relate to methods and apparatus for providing a homogeneous wafer temperature profile in a wafer cleaning tool without introducing unwanted particles onto the wafer. In some embodiments, a disclosed wafer cleaning tool has a processing chamber configured to house a semiconductor wafer. A dispensing arm provides a high temperature cleaning solution to the semiconductor wafer. A heating cup is located within the processing chamber at a position that is around the perimeter of the semiconductor wafer. The heating cup generates heat that increases the temperature of outer edges of the semiconductor wafer by a greater amount than a temperature of a center of the semiconductor wafer, thereby homogenizing an internal temperature profile of the semiconductor wafer.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Yen Hsu, Shao-Yen Ku, Chun-Li Chou
  • Publication number: 20140213063
    Abstract: A wet chemical processing method and apparatus for use in semiconductor manufacturing and in other applications, is provided. The method and apparatus provide for energizing a processing liquid such as a cleaning or etching liquid using ultrasonic, megasonic or other energy waves or by combining the liquid with a pressurized gas to form a pressurized spray, or using both. The energized, pressurized fluid is directed to a substrate surface using a fluid delivery system and overcomes any surface tensions associated with liquids, solids, or air and enables the processing liquid to completely fill any holes such as contact holes, via holes or trenches, formed on the semiconductor substrate.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Yen HSU, Shao-Yen KU, Chun-Li CHOU, Tsai-Pao SU
  • Publication number: 20130109140
    Abstract: A system and method for etching a substrate is provided. An embodiment comprises utilizing an inert carrier gas in order to introduce a liquid etchant to a substrate. The inert carrier gas may prevent undesirable chemical reactions from taking place during the etching process, thereby helping to reduce the number of defects that occur to the substrate and other structures during the etching process.
    Type: Application
    Filed: March 8, 2012
    Publication date: May 2, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Li Chou, Shao-Yen Ku, Chi-Yun Tseng, Yu-Yen Hsu, Tsai-Pao Su, Hobin Chen, Sheng-Chi Shih
  • Publication number: 20070279937
    Abstract: A backlight module includes a back bezel, at least two spot light sources, and a diffuser plate. The spot light sources are disposed on the back bezel. The diffuser is disposed above the back bezel and the spot light sources. The spot light sources are disposed at different locations along the thickness of the backlight module, or optical axes of the spot light sources are not parallel.
    Type: Application
    Filed: November 3, 2006
    Publication date: December 6, 2007
    Applicant: AU OPTRONICS CORP.
    Inventors: Meng-Jia Hsiao, Chih-Kuang Chen, Kuo-Tung Huang, Yu-Yen Hsu