Patents by Inventor Yu Yi Huang

Yu Yi Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240147664
    Abstract: A flow guiding device in an immersion-cooled chassis of a server comprises at least one deflector located above a chip on a mainboard in the chassis, each deflector comprises a first end for mounting to the mainboard above the chip and a second end inclined away from the mainboard. The first end is immersed in coolant, the second end is higher than the first end; the deflector further comprises a hollow part including multiple through holes for interrupting upward movement vapor bubbles generated by the hot chip, which reduces probability of the vapor bubbles escaping from the coolant liquid and the chassis. A liquid-cooled chassis having the flow guiding device is also disclosed.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 2, 2024
    Inventors: SUNG TSANG, TSUNG-LIN LIU, YU-CHIA TING, CHENG-YI HUANG, CHIA-NAN PAI
  • Publication number: 20240145381
    Abstract: In some embodiments, the present disclosure relates an integrated chip including a substrate. A conductive interconnect feature is arranged over the substrate. The conductive interconnect feature has a base feature portion with a base feature width and an upper feature portion with an upper feature width. The upper feature width is narrower than the base feature width such that the conductive interconnect feature has tapered outer feature sidewalls. An interconnect via is arranged over the conductive interconnect feature. The interconnect via has a base via portion with a base via width and an upper via portion with an upper via width. The upper via width is wider than the base via width such that the interconnect via has tapered outer via sidewalls.
    Type: Application
    Filed: January 9, 2024
    Publication date: May 2, 2024
    Inventors: Shin-Yi Yang, Hsin-Yen Huang, Ming-Han Lee, Shau-Lin Shue, Yu-Chen Chan, Meng-Pei Lu
  • Publication number: 20240142237
    Abstract: A localization device and a localization method for a vehicle are provided. The localization device includes an inertia measurer, an encoder, an image capturing device, and a processor. The processor obtains an encoded data by the encoder to generate a first odometer data, obtains an inertial data by the inertia measurer to generate a heading angle estimation data, and obtains an environmental image data by the image capturing device to generate a second odometer data. In a first fusion stage, the processor fuses the heading angle estimation data and the first odometer data to generate first fusion data. In a second fusion stage, the processor fuses the first fusion data, the heading angle estimation data and the second odometer data to generate pose estimation data corresponding to the localization device.
    Type: Application
    Filed: January 5, 2023
    Publication date: May 2, 2024
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Jhong Chen, Pei-Jung Liang, Ren-Yi Huang
  • Patent number: 11973075
    Abstract: An ESD protection device includes a PN diode formed in a semiconductor body. The PN diode has a first contact coupled to a metal structure on a front side of the semiconductor body and a second contact coupled to a metal structure on a back side of the semiconductor body. The metal coupled to the first contact is spaced apart from the metal coupled to the second contact by a thickness of the semiconductor body. This spacing greatly reduces the capacitance associated with the metal structures, which can substantially reduce the overall capacitance added to an I/O channel by the ESD protection device and thereby improve the performance of a high-speed circuit that uses the I/O channel.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: April 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tao Yi Hung, Yu-Xuan Huang, Kuo-Ji Chen
  • Publication number: 20240130686
    Abstract: A coupled physiological signal measuring device is provided. The coupled physiological signal measuring device includes at least two measuring electrodes, a signal processing unit and a multiplex feedback circuit unit. The measuring electrodes are used to obtain a real-time physiological signal through measurement. The signal processing unit includes a discharge control element. If an electrostatic surge of the real-time physiological signal meets a condition, a discharge control signal is outputted. The multiplex feedback circuit unit is used to discharge the measuring electrodes according to the discharge control signal.
    Type: Application
    Filed: January 20, 2023
    Publication date: April 25, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yun-Yi HUANG, Yu-Chiao TSAI, Hung-Hsien KO, Heng-Yin CHEN
  • Patent number: 11967591
    Abstract: A method of forming a semiconductor device includes forming a first interconnect structure over a carrier; forming a thermal dissipation block over the carrier; forming metal posts over the first interconnect structure; attaching a first integrated circuit die over the first interconnect structure and the thermal dissipation block; removing the carrier; attaching a semiconductor package to the first interconnect structure and the thermal dissipation block using first electrical connectors and thermal dissipation connectors; and forming external electrical connectors, the external electrical connectors being configured to transmit each external electrical connection into the semiconductor device, the thermal dissipation block being electrically isolated from each external electrical connection.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hao Chen, Fong-Yuan Chang, Po-Hsiang Huang, Ching-Yi Lin, Jyh Chwen Frank Lee
  • Publication number: 20240115151
    Abstract: A physiological signal measurement system, a physiological signal measurement method, and a mobile device protective case are provided. The physiological signal measurement system includes a first electrode, a second electrode, a reference electrode, an impedance front-end circuit module and a dynamic signal matching module. The first electrode, the second electrode and the reference electrode are used to obtain a first sensing signal and a second sensing signal. The impedance front-end circuit module is used to detect a first impedance of the first electrode and a second impedance of the second electrode, and obtain an original differential signal according to the first sensing signal and the second sensing signal. The dynamic signal matching module is used to obtain a calibration sequence according to the first impedance, the second impedance and the original differential signal, and obtain a compensated calibration sequence according to the calibration sequence and the original differential signal.
    Type: Application
    Filed: October 5, 2023
    Publication date: April 11, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yun-Yi HUANG, Yu-Chiao TSAI, Chun LIU, Heng-Yin CHEN
  • Publication number: 20240112323
    Abstract: A method for detecting defects on a wafer including the steps of obtaining a reference image of a chip pattern formed on a reference wafer, using a computer algorithm to analyze the reference image to produce a division map for the chip pattern; setting respective thresholds for divisions of the division map, obtaining a comparison data between a test image of the chip pattern formed on a test wafer and the reference image, using the division map and the thresholds to examine the comparison data to identify a defect in the test image.
    Type: Application
    Filed: November 17, 2022
    Publication date: April 4, 2024
    Applicant: United Semiconductor (Xiamen) Co., Ltd.
    Inventors: Yu Peng Hong, QINGRONG CHEN, Kai Ping Huang, Chin-Chun Huang, WEN YI TAN
  • Publication number: 20240105550
    Abstract: A device includes an integrated circuit die attached to a substrate; a lid attached to the integrated circuit die; a sealant on the lid; a spacer structure attached to the substrate adjacent the integrated circuit die; and a cooling cover attached to the spacer structure, wherein the cooling cover extends over the lid, wherein the cooling cover attached to the lid by the sealant. In an embodiment, the device includes a ring structure on the substrate, wherein the ring structure is between the spacer structure and the integrated circuit die.
    Type: Application
    Filed: January 10, 2023
    Publication date: March 28, 2024
    Inventors: Tung-Liang Shao, Yu-Sheng Huang, Hung-Yi Kuo, Chen-Hua Yu
  • Patent number: 11944017
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes an insulation layer. A bottom electrode via is disposed in the insulation layer. The bottom electrode via includes a conductive portion and a capping layer over the conductive portion. A barrier layer surrounds the bottom electrode via. A magnetic tunneling junction (MTJ) is disposed over the bottom electrode via.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tai-Yen Peng, Yu-Shu Chen, Chien Chung Huang, Sin-Yi Yang, Chen-Jung Wang, Han-Ting Lin, Jyu-Horng Shieh, Qiang Fu
  • Publication number: 20240096781
    Abstract: A package structure including a semiconductor die, a redistribution circuit structure and an electronic device is provided. The semiconductor die is laterally encapsulated by an insulating encapsulation. The redistribution circuit structure is disposed on the semiconductor die and the insulating encapsulation. The redistribution circuit structure includes a colored dielectric layer, inter-dielectric layers and redistribution conductive layers embedded in the inter-dielectric layers. The electronic device is disposed over the colored dielectric layer and electrically connected to the redistribution circuit structure.
    Type: Application
    Filed: March 20, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Ti Lu, Hao-Yi Tsai, Chia-Hung Liu, Yu-Hsiang Hu, Hsiu-Jen Lin, Tzuan-Horng Liu, Chih-Hao Chang, Bo-Jiun Lin, Shih-Wei Chen, Hung-Chun Cho, Pei-Rong Ni, Hsin-Wei Huang, Zheng-Gang Tsai, Tai-You Liu, Po-Chang Shih, Yu-Ting Huang
  • Publication number: 20240096830
    Abstract: A method includes forming a first sealing layer at a first edge region of a first wafer; and bonding the first wafer to a second wafer to form a wafer stack. At a time after the bonding, the first sealing layer is between the first edge region of the first wafer and a second edge region of the second wafer, with the first edge region and the second edge region comprising bevels. An edge trimming process is then performed on the wafer stack. After the edge trimming process, the second edge region of the second wafer is at least partially removed, and a portion of the first sealing layer is left as a part of the wafer stack. An interconnect structure is formed as a part of the second wafer. The interconnect structure includes redistribution lines electrically connected to integrated circuit devices in the second wafer.
    Type: Application
    Filed: January 9, 2023
    Publication date: March 21, 2024
    Inventors: Yu-Yi Huang, Yu-Hung Lin, Wei-Ming Wang, Chen Chen, Shih-Peng Tai, Kuo-Chung Yee
  • Publication number: 20240099150
    Abstract: A method includes forming Magnetic Tunnel Junction (MTJ) stack layers, which includes depositing a bottom electrode layer; depositing a bottom magnetic electrode layer over the bottom electrode layer; depositing a tunnel barrier layer over the bottom magnetic electrode layer; depositing a top magnetic electrode layer over the tunnel barrier layer; and depositing a top electrode layer over the top magnetic electrode layer. The method further includes patterning the MTJ stack layers to form a MTJ; and performing a passivation process on a sidewall of the MTJ to form a protection layer. The passivation process includes reacting sidewall surface portions of the MTJ with a process gas comprising elements selected from the group consisting of oxygen, nitrogen, carbon, and combinations thereof.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Tai-Yen Peng, Yu-Shu Chen, Sin-Yi Yang, Chen-Jung Wang, Chien Chung Huang, Han-Ting Lin, Jyu-Horng Shieh, Qiang Fu
  • Publication number: 20240088307
    Abstract: A semiconductor package is provided. The semiconductor package includes a heat dissipation substrate including a first conductive through-via embedded therein; a sensor die disposed on the heat dissipation substrate; an insulating encapsulant laterally encapsulating the sensor die; a second conductive through-via penetrating through the insulating encapsulant; and a first redistribution structure and a second redistribution structure disposed on opposite sides of the heat dissipation substrate. The second conductive through-via is in contact with the first conductive through-via. The sensor die is located between the second redistribution structure and the heat dissipation substrate. The second redistribution structure has a window allowing a sensing region of the sensor die receiving light. The first redistribution structure is electrically connected to the sensor die through the first conductive through-via, the second conductive through-via and the second redistribution structure.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Yu-Chih Huang, Chih-Hao Chang, Chia-Hung Liu, Ban-Li Wu, Ying-Cheng Tseng, Po-Chun Lin
  • Patent number: 11929318
    Abstract: A package structure includes a thermal dissipation structure, a first encapsulant, a die, a through integrated fan-out via (TIV), a second encapsulant, and a redistribution layer (RDL) structure. The thermal dissipation structure includes a substrate and a first conductive pad disposed over the substrate. The first encapsulant laterally encapsulates the thermal dissipation structure. The die is disposed on the thermal dissipation structure. The TIV lands on the first conductive pad of the thermal dissipation structure and is laterally aside the die. The second encapsulant laterally encapsulates the die and the TIV. The RDL structure is disposed on the die and the second encapsulant.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Tsung-Hsien Chiang, Yu-Chih Huang, Chia-Hung Liu, Ban-Li Wu, Ying-Cheng Tseng, Po-Chun Lin
  • Publication number: 20240081077
    Abstract: A transistor includes a first semiconductor layer, a second semiconductor layer, a semiconductor nanosheet, a gate electrode and source and drain electrodes. The semiconductor nanosheet is physically connected to the first semiconductor layer and the second semiconductor layer. The gate electrode wraps around the semiconductor nanosheet. The source and drain electrodes are disposed at opposite sides of the gate electrode. The first semiconductor layer surrounds the source electrode, the second semiconductor layer surrounds the drain electrode, and the semiconductor nanosheet is disposed between the source and drain electrodes.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 7, 2024
    Applicants: Taiwan Semiconductor Manufacturing Company, Ltd., National Yang Ming Chiao Tung University
    Inventors: Po-Tsun Liu, Meng-Han Lin, Zhen-Hao Li, Tsung-Che Chiang, Bo-Feng Young, Hsin-Yi Huang, Sai-Hooi Yeong, Yu-Ming Lin
  • Publication number: 20240079493
    Abstract: A semiconductor device and method of manufacturing the same are provided. The semiconductor device includes a substrate and a gate structure disposed on the substrate. The semiconductor device also includes a source region and a drain region disposed within the substrate. The substrate includes a drift region laterally extending between the source region and the drain region. The semiconductor device further includes a first stressor layer disposed over the drift region of the substrate. The first stressor layer is configured to apply a first stress to the drift region of the substrate. In addition, the semiconductor device includes a second stressor layer disposed on the first stressor layer. The second stressor layer is configured to apply a second stress to the drift region of the substrate, and the first stress is opposite to the second stress.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 7, 2024
    Inventors: GUAN-QI CHEN, CHEN CHI HSIAO, KUN-TSANG CHUANG, FANG YI LIAO, YU SHAN HUNG, CHUN-CHIA CHEN, YU-SHAN HUANG, TUNG-I LIN
  • Patent number: 11924534
    Abstract: This disclosure provides a lens assembly that has an optical path and includes a lens element and a light-blocking membrane layer. The lens element has an optical portion, and the optical path passes through the optical portion. The light-blocking membrane layer is coated on the lens element and adjacent to the optical portion. The light-blocking membrane layer has a distal side and a proximal side that is located closer to the optical portion than the distal side. The proximal side includes two extension structures and a recessed structure. Each of the extension structures extends along a direction away from the distal side, and the extension structures are not overlapped with each other in a direction in parallel with the optical path. The recessed structure is connected to the extension structures and recessed along a direction towards the distal side.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: March 5, 2024
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Jyun-Jia Cheng, Yu Chen Lai, Ming-Ta Chou, Cheng-Feng Lin, Chen-Yi Huang
  • Patent number: 10643916
    Abstract: A system and method for providing a conductive line is provided. In an embodiment the conductive line is formed by forming two passivation layers, wherein each passivation layer is independently patterned. Once formed, a seed layer is deposited into the two passivation layers, and a conductive material is deposited to fill and overfill the patterns within the two passivation layers. A planarization process such as a chemical mechanical polish may then be utilized in order to remove excess conductive material and form the conductive lines within the two passivation layers.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 5, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu Yi Huang, Hung-Jui Kuo, Chung-Shi Liu
  • Publication number: 20190252283
    Abstract: A system and method for providing a conductive line is provided. In an embodiment the conductive line is formed by forming two passivation layers, wherein each passivation layer is independently patterned. Once formed, a seed layer is deposited into the two passivation layers, and a conductive material is deposited to fill and overfill the patterns within the two passivation layers. A planarization process such as a chemical mechanical polish may then be utilized in order to remove excess conductive material and form the conductive lines within the two passivation layers.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Yu Yi Huang, Hung-Jui Kuo, Chung-Shi Liu