Patents by Inventor Yuan HAO

Yuan HAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10671296
    Abstract: Disclosed is a management system for managing a memory device having sub-chips each having a container area and a data area. A CPU selects a target sub-chip according to respective temperature of the sub-chips. When the CPU intends to access a first original data in one of the data areas, a hot date tracking device acquires a first original address of the first original data from the CPU. When the first original address is recorded in one of a plurality of tracking layers, the CPU is indicated to access a first copied data corresponding to the first original data in the container area of the target sub-chip according to a current tracking layer recording the first original address. When the first original address is not recorded in the tracking layers, the CPU accesses the first original data in the data area according to the first original address.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: June 2, 2020
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Hung-Sheng Chang, Hsiang-Pang Li, Yuan-Hao Chang, Tei-Wei Kuo
  • Publication number: 20200150525
    Abstract: A method of making microstructures, including: setting a photoresist layer on a surface of a base; covering a surface of the photoresist layer with a photolithography mask plate, wherein the photolithography mask plate includes: a substrate; a patterned chrome layer on a surface of the substrate; a carbon nanotube layer on the patterned chrome layer, wherein a first pattern of the patterned chrome layer is the same as a second pattern of the carbon nanotube layer; a cover layer on the carbon nanotube layer; exposing the photoresist layer to form an exposed photoresist layer by irradiating the photoresist layer through the photolithography mask plate with ultraviolet light; and developing the exposed photoresist layer to obtain a patterned photoresist microstructures.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 14, 2020
    Inventors: MO CHEN, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Publication number: 20200150526
    Abstract: A method of making microstructures, including: setting a photoresist layer on a base; covering the photoresist layer with a photolithography mask plate, wherein the photolithography mask plate includes: a substrate; a carbon nanotube layer on the substrate; a patterned chrome layer on the carbon nanotube layer so that the carbon nanotube layer is sandwiched between the patterned chrome layer and the substrate, wherein a first pattern of the patterned chrome layer is the same as a second pattern of the carbon nanotube layer; a cover layer on the patterned chrome layer; exposing the photoresist layer to form an exposed photoresist layer by irradiating the photoresist layer through the photolithography mask plate with ultraviolet light; and developing the exposed photoresist layer to obtain a patterned photoresist microstructures.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 14, 2020
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Publication number: 20200142296
    Abstract: A method of making microstructures, including: setting a photoresist layer on a surface of a base; covering a surface of the photoresist layer with a photolithography mask plate, wherein the photolithography mask plate includes: a substrate; a carbon nanotube composite structure on a surface of the substrate, wherein the carbon nanotube composite structure includes a carbon nanotube layer and a chrome layer coated on the carbon nanotube layer; and a cover layer on the carbon nanotube composite structure; exposing the photoresist layer to form an exposed photoresist layer by irradiating the photoresist layer through the photolithography mask plate with ultraviolet light; and developing the exposed photoresist layer to obtain a patterned photoresist microstructures.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: MO CHEN, QUN-QING LI, LI-HUI ZHANG, YUAN-HAO JIN, DONG AN, SHOU-SHAN FAN
  • Patent number: 10641699
    Abstract: A method for making carrier for use in single molecule detection is related. The method includes following steps: firstly, placing a middle layer on a substrate; secondly, providing a carbon nanotube composite structure, wherein the carbon nanotube composite structure includes a carbon nanotube structure and a protective layer coated on the carbon nanotube structure, the carbon nanotube structure includes a plurality of carbon nanotubes intersected with each other and defines a plurality of openings; thirdly, placing the carbon nanotube composite structure on a surface of the middle layer, wherein parts of the surface are exposed through the plurality of openings; fourthly, forming the patterned bulge by dry etching the middle layer using the carbon nanotube composite structure as a mask, wherein the patterned bulge includes a plurality of strip-shaped bulges intersected with each other; depositing the metal layer on the patterned bulge.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: May 5, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10643761
    Abstract: Disclosed is a method for evaluating an irradiation angle of a beam, including a step of sampling the irradiation angle of the beam, wherein the irradiation angle of the beam is defined as being the direction of the vector of the irradiation point of the beam to the pre-set point of the tumor; and a step of calculating the track of the beam passing through the organs, wherein it is determined whether the tumor is fully covered within the effective treatment depth, and if so, entering the steps of calculating the evaluation coefficient, recording the irradiation conditions and calculating the results, and returning to the step of sampling the irradiation angle of the beam; and if not, entering the step of giving the worst evaluation coefficient and returning to the step of sampling the irradiation angle of the beam.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: May 5, 2020
    Assignee: NEUBORON MEDTECH LTD.
    Inventors: Yuan-Hao Liu, Wei-Lin Chen
  • Patent number: 10636534
    Abstract: A shielding material for shielding radioactive ray and preparation method thereof. The shielding material consists of water, a cementing material, a fine aggregate material, a coarse aggregate material and an additive, wherein the fine aggregate material consists of a borosilicate glass powder and a barite sand, and the coarse aggregate material consists of a barite. A content of boron element in the borosilicate glass powder accounts for 0.5%-1% of the total weight of the shielding material. A content of barium sulfate in the barite sand and the barite accounts for 71%-75% of the total weight of the shielding material. Other contents include water, the cementing material and the additive, and a sum of contents of all components is 100% total weight of the shielding material.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 28, 2020
    Assignee: NEUBORON MEDTECH LTD.
    Inventors: Ming-Chuan Chang, Wei-Lin Chen, Yuan-Hao Liu
  • Patent number: 10617893
    Abstract: A beam shaping assembly for neutron capture therapy includes a beam inlet, a target having nuclear reaction with an incident proton beam from the beam inlet to produce neutrons forming a neutron beam, a moderator adjoining to the target, a reflector surrounding the moderator, a thermal neutron absorber adjoining to the moderator, a radiation shield arranged inside the beam shaping assembly and a beam outlet. The material of the moderator is subjected to a powder sintering process using a powder sintering device so as to change powders or a power compact into blocks. The reflector leads the neutrons deviated from the main axis back. The thermal neutron absorber is used for absorbing thermal neutrons so as to avoid overdosing in superficial normal tissue during therapy. The radiation shield is used for shielding leaking neutrons and photons so as to reduce dose of the normal tissue not exposed to irradiation.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: April 14, 2020
    Assignee: NEUBORON MEDTECH LTD.
    Inventors: Yuan-hao Liu, Wei-lin Chen, Pei-yi Lee, Ming-chuan Chang, Wenyu Xu
  • Patent number: 10610704
    Abstract: Abeam shaping assembly for neutron capture therapy includes a beam inlet, a target having nuclear reaction with an incident proton beam from the beam inlet to produce neutrons forming a neutron beam defining a main axis, a moderator adjoining to the target, a reflector surrounding the moderator, a thermal neutron absorber adjoining to the moderator, a radiation shield arranged inside the beam shaping assembly and a beam outlet. The neutrons are moderated to epithermal neutron energies. The reflector leads the neutrons deviated from the main axis back, and a gap channel is arranged between the moderator and the reflector. The thermal neutron absorber is used for absorbing thermal neutrons so as to avoid overdosing in superficial normal tissue during therapy. The radiation shield is used for shielding leaking neutrons and photons so as to reduce dose of the normal tissue not exposed to irradiation.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 7, 2020
    Assignee: NEUBORON MEDTECH LTD.
    Inventors: Yuan-Hao Liu, Pei-Yi Lee
  • Patent number: 10606167
    Abstract: A photolithography mask plate, the photolithography mask plate including: a substrate; a carbon nanotube composite structure on a surface of the substrate, wherein the carbon nanotube composite structure comprises a carbon nanotube layer and a chrome layer coated on the carbon nanotube layer; a cover layer on the carbon nanotube composite structure.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: March 31, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Publication number: 20200087602
    Abstract: A liquor quality optimization device includes a main body defining a receiving chamber having an inlet portion and an outlet portion; an adaptor head coupled to the inlet portion of the main body for attachment to a liquor container, having a fluid passage in communication with the receiving chamber of the main body and an air passage in communication between the fluid passage and an exterior of the adaptor head; and a liquor molecular refinement structure disposed within the receiving chamber in the main body, having properties to cut and refine macromolecules in liquor into small molecules, thereby accelerating conversion of ingredients in the liquor which affects the taste, and decanting new brewed liquor as aged liquor in taste in addition to filtering sediments in liquor to enhance the taste of liquor.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 19, 2020
    Inventor: Yuan-Hao CHANG
  • Patent number: 10571798
    Abstract: A photolithography mask plate, the photolithography mask plate including: a substrate; a carbon nanotube layer located on the substrate; a patterned chrome layer located on the carbon nanotube layer, wherein the patterned chrome layer and the carbon nanotube layer have the same pattern; a cover layer located on the patterned chrome layer.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: February 25, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Patent number: 10564539
    Abstract: A photolithography mask plate, the photolithography mask plate including: a substrate; a carbon nanotube layer on the substrate; a patterned chrome layer on the carbon nanotube layer, wherein the patterned chrome layer and the carbon nanotube layer have the same pattern; a cover layer on the patterned chrome layer.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: February 18, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Publication number: 20200023205
    Abstract: A beam shaping assembly for neutron capture therapy includes a beam inlet, a target having nuclear reaction with an incident proton beam from the beam inlet to produce neutrons forming a neutron beam, a moderator adjoining to the target, a reflector surrounding the moderator, a thermal neutron absorber adjoining to the moderator, a radiation shield arranged inside the beam shaping assembly and a beam outlet. The material of the moderator is subjected to a powder sintering process using a powder sintering device so as to change powders or a power compact into blocks. The reflector leads the neutrons deviated from the main axis back. The thermal neutron absorber is used for absorbing thermal neutrons so as to avoid overdosing in superficial normal tissue during therapy. The radiation shield is used for shielding leaking neutrons and photons so as to reduce dose of the normal tissue not exposed to irradiation.
    Type: Application
    Filed: May 2, 2019
    Publication date: January 23, 2020
    Inventors: Yuan-hao LIU, Wei-lin CHEN, Pei-yi LEE, Ming-chuan CHANG, Wenyu XU
  • Patent number: 10537750
    Abstract: A radiation detection system and method for a neutron capture therapy system, which may increase the accuracy of neutron beam irradiation dose of the neutron capture therapy system and find out a fault position in time. The neutron capture therapy system includes a charged particle beam, a charged particle beam inlet allowing the charged particle beam to pass through, a neutron beam generating unit which may generate a neutron beam after a nuclear reaction occurs between the neutron beam generating unit and the charged particle beam, a beam shaping assembly for adjusting the flux and the quality of the neutron beam generated by the neutron beam generating unit, and a beam outlet adjacent to the beam shaping assembly, the radiation detection system includes a radiation detection device for real-time detection of ? rays instantly emitted under neutron beam irradiation.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: January 21, 2020
    Assignee: NEUBORON MEDTECH LTD.
    Inventors: Yuan-Hao Liu, Ming-Chen Hsiao
  • Patent number: 10533948
    Abstract: A carrier for use in single molecule detection is related. The carrier includes a substrate; a middle layer, on the substrate; and a metal layer, on the middle layer; wherein the substrate is a flexible substrate, the middle layer includes a base and a patterned bulge on the base, the patterned bulge includes a plurality of strip-shaped bulges, the metal layer is on the patterned bulge, the carrier further includes a carbon nanotube composite structure between the metal layer and the patterned bulge.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 14, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10527553
    Abstract: The disclosure relates to a carrier for use in single molecule detection. The carrier includes a flexible substrate and a metal layer on the flexible substrate. The flexible substrate includes a base and a bulge pattern located on a surface of the base. The bulge pattern includes a number of strip-shaped bulges intersecting with each other to form a net and define a number of recesses. The metal layer is located on the bulge pattern. The carrier for use in single molecule detection has a relative higher SERS and can enhance the Raman scattering.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: January 7, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20200003910
    Abstract: A method for measuring radiation intensity includes measuring the radiation intensity received by the protein in a radiation field based on degree of protein degradation in the radiation field, wherein the degree of degradation is a ratio of the molecular weight of the protein before and after irradiation. The measuring method is simple in operation, small in number of steps, small in error, and capable of measuring radiation doses of various radiation fields or even mixed radiation fields. Use of a biological dosimeter for measuring the radiation intensity by the method in a neutron capture therapy system can not only assess radiation contamination in the irradiation chamber, but also evaluate the neutron dose.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Inventors: Yuan-hao LIU, Jui-fen CHEN, Jing HE, Ming-chen HSIAO
  • Publication number: 20190381337
    Abstract: The present disclosure discloses a boron neutron capture therapy system comprising: a boron neutron capture therapy device and an ?-amino acid-like boron trifluoride compound having a structure shown as formula (I) below: Wherein: R is selected from hydrogen, methyl, isopropyl, 1-methylpropyl, 2-methylpropyl, hydroxymethyl, 1-hydroxyethyl, benzyl or hydroxybenzyl; M is H or metal atom. The energy generated from the action of the neutron beam generated by the boron neutron capture therapy device on the ?-amino acid-like boron trifluoride compound destroys tumor cell DNA. In another aspect, the present disclosure discloses a use of an ?-amino acid-like boron trifluoride compound in the preparation of a medicament for tumor therapy.
    Type: Application
    Filed: July 2, 2019
    Publication date: December 19, 2019
    Inventor: Yuan-Hao LIU
  • Publication number: 20190358470
    Abstract: A neutron capture therapy system and a target for a particle beam generating device, which may improve the heat dissipation performance of the target, reduce blistering and extend the service life of the target. The neutron capture therapy system includes a neutron generating device and a beam shaping assembly. The neutron generating device includes an accelerator and a target, and a charged particle beam generated by acceleration of the accelerator interacts with the target to generate a neutron beam. The target includes an acting layer, a backing layer and a heat dissipating layer, the acting layer interacts with the charged particle beam to generate the neutron beam, the base layer supports the action layer, and the heat dissipating layer includes a tubular member composed of tubes arranged side by side.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 28, 2019
    Inventors: Yuan-Hao LIU, Wei-Lin Chen