Patents by Inventor Yuan-Wen Hsiao

Yuan-Wen Hsiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929609
    Abstract: A surge protection circuit is presented. The surge protection circuit includes an input port for receiving an input voltage; an energy release cell having a first terminal coupled to the input port, a second terminal coupled to ground, and a control terminal coupled to the input port via a first switch device and to the ground via a second switch device. The surge protection circuit is adapted to close the first switch device to enable a current to flow from the input port to ground through the release cell upon occurrence of a positive voltage surge and to close the second switch device to enable a current to flow from ground to the input port through the release cell upon occurrence of a negative voltage surge.
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: March 12, 2024
    Assignee: Renesas Design Technology Inc.
    Inventors: Der-Ju Hung, Yuan Wen Hsiao
  • Publication number: 20230361557
    Abstract: A surge protection circuit is presented. The surge protection circuit includes an input port for receiving an input voltage; an energy release cell having a first terminal coupled to the input port, a second terminal coupled to ground, and a control terminal coupled to the input port via a first switch device and to the ground via a second switch device. The surge protection circuit is adapted to close the first switch device to enable a current to flow from the input port to ground through the release cell upon occurrence of a positive voltage surge and to close the second switch device to enable a current to flow from ground to the input port through the release cell upon occurrence of a negative voltage surge.
    Type: Application
    Filed: May 4, 2022
    Publication date: November 9, 2023
    Inventors: Der-Ju Hung, Yuan Wen Hsiao
  • Patent number: 10886834
    Abstract: A power converter and a method for receiving an input voltage and providing an output voltage is presented. The power converter has a switching circuit to generate the output voltage. The switching circuit has a first switch, a switch control circuit arranged to selectively operate the first switch in a first state or a second state. There is a ripple reduction circuit to set a first state duration based on a property of a load current. The load current is a current that the power converter provides to a load that is coupled to the output voltage.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 5, 2021
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Der Ju Hung, Yu Ta Lin, Yuan Wen Hsiao, Chi-Chia Huang, Chia Wen Tsai
  • Patent number: 10727749
    Abstract: A dual rail power supply system and a method for providing a first voltage and a second voltage to a load are presented. The power supply system draws a load current from the dual rail power supply system. The system has a first voltage rail for coupling to a first terminal of the load, a second voltage rail for coupling to a second terminal of the load, a first power converter to provide the first voltage at the first voltage rail, a second power converter to provide the second voltage at the second voltage rail, a third power converter comprising a first output coupled to the first voltage rail and a second output coupled to the second voltage rail. The third power converter generates a slave current and provides the slave current to the load such that the load current comprises the slave current, during a first mode.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: July 28, 2020
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Cheng-Teng Chen, Ruei-Hong Peng, Yuan Wen Hsiao, Alan Somerville
  • Patent number: 10686377
    Abstract: There is presented a boost converter and an associated method for starting the boost converter. The boost converter includes an input terminal for receiving an input voltage, an output terminal for providing an output voltage, a low-side power switch and a high-side power switch coupled at a switching node, and a voltage regulator coupled to the high-side power switch. The boost converter is also provided with a controller for operating the boost converter in a start-up phase. In the start-up phase the controller controls the boost converter to generate an intermediate voltage and increase the intermediate voltage to a predetermined value. The intermediate voltage is then provided to the voltage regulator to obtain a drive voltage. The high side power switch is then driven to increase the output voltage linearly up to a start-up voltage.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: June 16, 2020
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Edward Lu, Stella Su, Yuan Wen Hsiao, Der-Ju Hung
  • Patent number: 10333403
    Abstract: Adaptive-on-time techniques to improve the frequency variations inherent in constant-on-time COT converters are presented. A switching converter contains a power switch; a pulse generator adapted to generate a pulsed signal to switch the power switch on with a switching frequency; a ramp generator adapted to generate a ramp signal; and a controller adapted to detect a parameter of the ramp signal, compare the parameter with a reference value, and to generate a control signal based on the comparison to control the switching frequency. This allows controlling a switching frequency of the converter without increasing a noise level of the converter.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: June 25, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Chi-Chia Huang, Yuan-Wen Hsiao
  • Patent number: 10186967
    Abstract: A switching converter comprising a regulation circuit adapted to regulate an output value of the converter based on a ramp signal is provided. A feedback circuit adapted to control at least one of a delay and a slope of the ramp signal based on a parameter of the ramp signal is also provided. A method of regulating an output value of a switching converter is also presented.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: January 22, 2019
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Chi-Chia Huang, Yuan-Wen Hsiao
  • Patent number: 10110125
    Abstract: A sequential driving method for driving a switch circuit of a power converter is presented. The method has the steps of driving a switch circuit which contains a power switch, defining a driving sequence; and applying sequentially an electrical parameter to the power switch, based on the driving sequence. Defining a driving sequence includes defining a plurality of different driving levels associated with the electrical parameter and defining a plurality of time windows within a switching time period. Each time window is associated with a driving level among the plurality of driving levels.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: October 23, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Der Ju Hung, Yuan Wen Hsiao, Chi-Chia Huang
  • Patent number: 10079539
    Abstract: A protection circuit and a method for a high voltage switching regulator is presented. A power supply comprising a switching converter for providing an output voltage is provided. The switching converter is comprised of a first power switch coupled to a second power switch via a switching node, and a driver coupled to the first and second power switches. There is a protection circuit comprised of a first isolation switch coupled to a second isolation switch and a first driver for driving the first isolation switch, and a second driver for driving the second isolation switch. The circuit and method may comprise turning off both the first isolation switch and the second isolation switch when the first power switch and the second power switch are both turned off. This isolates a low voltage domain from a high voltage domain. This prevents current leakages from occurring during switching dead times.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: September 18, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Yuan Wen Hsiao, Chang Ching Wu, Chi-Chia Huang, Der Ju Hung
  • Patent number: 10044269
    Abstract: A switching converter, which produces an output voltage, contains a switch operable between a first state for opposing a decrease in the output voltage and a second state for opposing an increase in the output voltage. The converter also contains a circuit adapted to determine a time period during which the output voltage is decreasing, wherein during the time period the switch is in the first state. The circuit also calculates, based on the time period, a time to turn the switch from the first state to the second state to prevent the output voltage increasing above a reference value. Optionally, the time to turn the switch to the second state is based on a duty cycle of the converter.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: August 7, 2018
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Yu-Ta Lin, Yuan-Wen Hsiao
  • Publication number: 20180219483
    Abstract: A protection circuit and a method for a high voltage switching regulator is presented. A power supply comprising a switching converter for providing an output voltage is provided. The switching converter is comprised of a first power switch coupled to a second power switch via a switching node, and a driver coupled to the first and second power switches. There is a protection circuit comprised of a first isolation switch coupled to a second isolation switch and a first driver for driving the first isolation switch, and a second driver for driving the second isolation switch. The circuit and method may comprise turning off both the first isolation switch and the second isolation switch when the first power switch and the second power switch are both turned off. This isolates a low voltage domain from a high voltage domain. This prevents current leakages from occurring during switching dead times.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 2, 2018
    Inventors: Yuan Wen Hsiao, Chang Ching Wu, Chi-Chia Huang, Der Ju Hung
  • Publication number: 20180152188
    Abstract: A sequential driving method for driving a switch circuit of a power converter is presented. The method has the steps of driving a switch circuit which contains a power switch, defining a driving sequence; and applying sequentially an electrical parameter to the power switch, based on the driving sequence. Defining a driving sequence includes defining a plurality of different driving levels associated with the electrical parameter and defining a plurality of time windows within a switching time period. Each time window is associated with a driving level among the plurality of driving levels.
    Type: Application
    Filed: May 9, 2017
    Publication date: May 31, 2018
    Inventors: Der Ju Hung, Yuan Wen Hsiao, Chi-Chia Huang
  • Patent number: 9859783
    Abstract: A voltage converter controller, adapted to a voltage converter circuit, includes a power switch controller and a dead-time determining circuit. The power switch controller receives a PWM signal and outputs a high-side control signal and a low-side control signal accordingly to control the conduction and cut-off of a high-side power switch and a low-side power switch respectively. When the power switch controller starts to control the low-side power switch cut-off, after a first dead-time, the power switch controller starts to control the high-side power switch conducting. The dead-time determining circuit detects a current of the low-side power switch to be larger or smaller than a threshold current when the low-side power switch is conducted, and determines the first dead-time to be a first value or a second value accordingly.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: January 2, 2018
    Assignee: RICHTEK TECHNOLOGY CORP
    Inventors: Yu-Lun Chang, Yuan-Wen Hsiao, Jian-Rong Huang
  • Publication number: 20170373596
    Abstract: Adaptive-on-time techniques to improve the frequency variations inherent in constant-on-time COT converters are presented. A switching converter contains a power switch; a pulse generator adapted to generate a pulsed signal to switch the power switch on with a switching frequency; a ramp generator adapted to generate a ramp signal; and a controller adapted to detect a parameter of the ramp signal, compare the parameter with a reference value, and to generate a control signal based on the comparison to control the switching frequency. This allows controlling a switching frequency of the converter without increasing a noise level of the converter.
    Type: Application
    Filed: November 28, 2016
    Publication date: December 28, 2017
    Inventors: Chi-Chia Huang, Yuan-Wen Hsiao
  • Publication number: 20170373595
    Abstract: A switching converter comprising a regulation circuit adapted to regulate an output value of the converter based on a ramp signal is provided. A feedback circuit adapted to control at least one of a delay and a slope of the ramp signal based on a parameter of the ramp signal is also provided. A method of regulating an output value of a switching converter is also presented.
    Type: Application
    Filed: June 28, 2016
    Publication date: December 28, 2017
    Inventors: Chi-Chia Huang, Yuan-Wen Hsiao
  • Publication number: 20170366080
    Abstract: A voltage converter controller, adapted to a voltage converter circuit, includes a power switch controller and a dead-time determining circuit. The power switch controller receives a PWM signal and outputs a high-side control signal and a low-side control signal accordingly to control the conduction and cut-off of a high-side power switch and a low-side power switch respectively. When the power switch controller starts to control the low-side power switch cut-off, after a first dead-time, the power switch controller starts to control the high-side power switch conducting. The dead-time determining circuit detects a current of the low-side power switch to be larger or smaller than a threshold current when the low-side power switch is conducted, and determines the first dead-time to be a first value or a second value accordingly.
    Type: Application
    Filed: November 8, 2013
    Publication date: December 21, 2017
    Applicant: RICHTEK TECHNOLOGY CORP
    Inventors: Yu-Lun Chang, Yuan-Wen Hsiao, Jian-Rong Huang
  • Publication number: 20170315578
    Abstract: A switching converter, which produces an output voltage, contains a switch operable between a first state for opposing a decrease in the output voltage and a second state for opposing an increase in the output voltage. The converter also contains a circuit adapted to determine a time period during which the output voltage is decreasing, wherein during the time period the switch is in the first state. The circuit also calculates, based on the time period, a time to turn the switch from the first state to the second state to prevent the output voltage increasing above a reference value. Optionally, the time to turn the switch to the second state is based on a duty cycle of the converter.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 2, 2017
    Inventors: Yu-Ta Lin, Yuan-Wen Hsiao
  • Patent number: 8917077
    Abstract: The present invention provides a multi-phase switching regulator and a droop circuit for use in the multi-phase switching regulator. The multi-phase switching regulator generates pulse width modulation (PWM) signals according to an output voltage and a droop signal, to drive a plurality of switching sets to convert an input voltage to the output voltage. The droop circuit detects the sum of the currents generated by the plurality of switching sets and provides the droop signal which is related to the sum of the currents to the multi-phase switching regulator. The droop signal can be used for over current protection (OCP) or for the droop control.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: December 23, 2014
    Assignee: Richtek Technology Corporation
    Inventors: Yu-Ta Lin, Jian-Rong Huang, Yi-Cheng Wan, Chien-Hui Wang, Yuan-Wen Hsiao
  • Publication number: 20140021929
    Abstract: The present invention provides a multi-phase switching regulator and a droop circuit for use in the multi-phase switching regulator. The multi-phase switching regulator generates pulse width modulation (PWM) signals according to an output voltage and a droop signal, to drive a plurality of switching sets to convert an input voltage to the output voltage. The droop circuit detects the sum of the currents generated by the plurality of switching sets and provides the droop signal which is related to the sum of the currents to the multi-phase switching regulator. The droop signal can be used for over current protection (OCP) or for the droop control.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 23, 2014
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Yu-Ta Lin, Jian-Rong Huang, Yi-Cheng Wan, Chien-Hui Wang, Yuan-Wen Hsiao
  • Publication number: 20130057237
    Abstract: The present invention discloses a multi-phase switching regulator and a droop circuit therefor. The droop circuit includes: multiple first resistors, which are coupled to corresponding phase nodes respectively to sense current through the phase nodes; a second resistor, which is coupled to the multiple first resistors; an error amplifier circuit, which has an inverting input end and a non-inverting input end, wherein the inverting input end is coupled to the second resistor and an output end of the error amplifier circuit, and the non-inverting input end is coupled to an output node; and a droop capacitor, which is coupled between the second resistor and the output node; wherein the droop circuit provides the droop signal according to a voltage drop across the second resistor or current through the second resistor.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 7, 2013
    Inventors: An-Tung Chen, Yuan-Wen Hsiao, Yi-Cheng Wan