Patents by Inventor Yuanfang Gao

Yuanfang Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9181571
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: November 10, 2015
    Assignee: The Curators of the University of Missouri
    Inventors: Venumadhav Korampally, Shubhra Gangopadhyay, Keshab Gangopadhyay, Sheila A. Grant, Steven B. Kleiboeker, Shantanu Bhattacharya, Yuanfang Gao
  • Publication number: 20150004648
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 1, 2015
    Inventors: VENUMADHAV KORAMPALLY, SHUBHRA GANGOPADHYAY, KESHAB GANGOPADHYAY, SHEILA A. GRANT, STEVEN B. KLEIBOEKER, SHANTANU BHATTACHARYA, YUANFANG GAO
  • Publication number: 20140099675
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Application
    Filed: September 9, 2013
    Publication date: April 10, 2014
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: VENUMADHAV KORAMPALLY, SHUBHRA GANGOPADHYAY, KESHAB GANGOPADHYAY, SHEILA A. GRANT, STEVEN B. KLEIBOEKER, SHANTANU BHATTACHARYA, YUANFANG GAO
  • Patent number: 8545769
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 1, 2013
    Assignee: The Curators of the University of Missouri
    Inventors: Venumadhav Korampally, Shubhra Gangopadhyay, Keshab Gangopadhyay, Sheila A. Grant, Steven B. Kleiboeker, Shantanu Bhattacharya, Yuanfang Gao
  • Publication number: 20120178130
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Application
    Filed: March 9, 2012
    Publication date: July 12, 2012
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: VENUMADHAV KORAMPALLY, SHUBHRA GANGOPADHYAY, KESHAB GANGOPADHYAY, SHEILA A. GRANT, STEVEN B. KLEIBOEKER, SHANTANU BHATTACHARYA, YUANFANG GAO
  • Patent number: 8173077
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: May 8, 2012
    Assignee: The Curators of the University of Missouri
    Inventors: Venumadhav Korampally, Shubhra Gangopadhyay, Keshab Gangopadhyay, Sheila A. Grant, Steven B. Kleiboeker, Shantanu Bhattacharya, Yuanfang Gao
  • Patent number: 7608478
    Abstract: A chip for igniting nanoenergetic materials, includes a substrate, an igniter positioned on the substrate and the nanoenergetic material arranged in a linear pattern positioned on said substrate. A method of making a chip for igniting nanoenergetic materials includes providing a substrate, forming an igniter on the substrate and coating the substrate with a polymer layer. A pattern of nanoenergetic material comprising a fuel and an oxidizer is formed on the substrate. The nanoenergetic material is ignited by the igniter by supplying power to the leads attached to the heater film.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: October 27, 2009
    Assignee: The Curators of the University of Missouri
    Inventors: Shubhra Gangopadhyay, Rajesh Shende, Steve Apperson, Shantanu Bhattacharya, Yuanfang Gao
  • Publication number: 20090148910
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 11, 2009
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Venumadhav Korampally, Shubhra Gangopadhyay, Keshab Gangopadhyay, Sheila A. Grant, Steven B. Kleiboeker, Shantanu Bhattacharya, Yuanfang Gao
  • Publication number: 20070099335
    Abstract: A chip for igniting nanoenergetic materials, includes a substrate, an igniter positioned on the substrate and the nanoenergetic material arranged in a linear pattern positioned on said substrate. A method of making a chip for igniting nanoenergetic materials includes providing a substrate, forming an igniter on the substrate and coating the substrate with a polymer layer. A pattern of nanoenergetic material comprising a fuel and an oxidizer is formed on the substrate. The nanoenergetic material is ignited by the igniter by supplying power to the leads attached to the heater film.
    Type: Application
    Filed: October 28, 2005
    Publication date: May 3, 2007
    Inventors: Shubhra Gangopadhyay, Rajesh Shende, Steve Apperson, Shantanu Bhattacharya, Yuanfang Gao