Patents by Inventor Yuanhong Guo

Yuanhong Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932950
    Abstract: A method includes machining a raw surface of a metal component to remove first native oxide from a metal base of the metal component to generate an as-machined surface of the metal component. A second native oxide is formed on the metal base of the as-machined surface of the metal component subsequent to the machining. The method further includes, subsequent to the machining, performing operations to generate a finished surface of the metal component. The operations include a surface machining of the as-machined surface of the metal component to remove the second native oxide.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: March 19, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yuanhong Guo, Sheng Michael Guo, Marek W. Radko, Steven Victor Sansoni, Nagendra Madiwal, Matvey Farber, Pingping Gou, Song-Moon Suh, Jeffrey C. Hudgens, Yuji Murayama, Anurag Bansal, Shaofeng Chen, Michael Kuchar
  • Publication number: 20240062999
    Abstract: A method of cleaning a chamber for an electronics manufacturing system includes flowing a gas mixture comprising oxygen and a carrier gas into a remote plasma generator. The method further includes generating a plasma from the gas mixture by the remote plasma generator and performing a remote plasma cleaning of the chamber by flowing the plasma into an interior of the chamber, wherein the plasma removes a plurality of organic contaminants from the chamber.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 22, 2024
    Inventors: Yuanhong Guo, Sheng Guo, Marek Radko, Steve Sansoni, Xiaoxiong Yuan, See-Eng Phan, Yuji Murayama, Pingping Gou, Song-Moon Suh
  • Patent number: 11854773
    Abstract: A method of cleaning a chamber for an electronics manufacturing system includes flowing a gas mixture comprising oxygen and a carrier gas into a remote plasma generator. The method further includes generating a plasma from the gas mixture by the remote plasma generator and performing a remote plasma cleaning of the chamber by flowing the plasma into an interior of the chamber, wherein the plasma removes a plurality of organic contaminants from the chamber.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: December 26, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yuanhong Guo, Sheng Guo, Marek Radko, Steve Sansoni, Xiaoxiong Yuan, See-Eng Phan, Yuji Murayama, Pingping Gou, Song-Moon Suh
  • Patent number: 11735420
    Abstract: Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: August 22, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Chang Ke, Lei Zhou, Biao Liu, Cheng Pan, Yuanhong Guo, Liqi Wu, Michael S. Jackson, Ludovic Godet, Tobin Kaufman-Osborn, Erica Chen, Paul F. Ma
  • Publication number: 20230151497
    Abstract: A method includes machining a raw surface of a metal component to remove first native oxide from a metal base of the metal component to generate an as-machined surface of the metal component. A second native oxide is formed on the metal base of the as-machined surface of the metal component subsequent to the machining. The method further includes, subsequent to the machining, performing operations to generate a finished surface of the metal component. The operations include a surface machining of the as-machined surface of the metal component to remove the second native oxide.
    Type: Application
    Filed: January 13, 2023
    Publication date: May 18, 2023
    Inventors: Yuanhong Guo, Sheng Michael Guo, Marek W. Radko, Steven Victor Sansoni, Nagendra Madiwal, Matvey Farber, Pingping Gou, Song-Moon Suh, Jeffrey C. Hudgens, Yuji Murayama, Anurag Bansal, Shaofeng Chen, Michael Kuchar
  • Publication number: 20230048337
    Abstract: Disclosed are implementations for minimizing substrate contamination during pressure changes in substrate processing systems. Over a duration of a pressure change (increase or decrease) in a chamber of a substrate processing system, a flow rate is adjusted multiple times to reduce occurrence of contaminant particles in an environment of the chamber. In some instances, the flow rate is changed continuously using at least one dynamic valve that enable continuous control over the pressure dynamics of the chamber.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 16, 2023
    Inventors: Robert A. Medure, Raechel Chu-Hui Tan, Changgong Wang, Yuanhong Guo, Sai Padhy, Ashley M. Okada, Kenneth Le, Atilla Kilicarslan, Dean C. Hruzek
  • Patent number: 11555250
    Abstract: A method includes receiving a metal component including a raw surface that includes a metal base, a first native oxide disposed on the metal base, and hydrocarbons disposed on the metal base. The method further includes machining the raw surface of the metal component to remove the first native oxide and a first portion of the hydrocarbons from the metal base. The machining generates an as-machined surface of the metal component including the metal base without the first native oxide and without the first portion of the hydrocarbons. The method further includes performing a surface machining of the as-machined surface of the metal component to remove a second portion of the hydrocarbons. The method further includes surface treating the metal component to remove a third portion of the hydrocarbons. The method further includes performing a cleaning of the metal component and drying the metal component.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: January 17, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yuanhong Guo, Sheng Michael Guo, Marek W Radko, Steven Victor Sansoni, Nagendra Madiwal, Matvey Farber, Pingping Gou, Song-Moon Suh, Jeffrey C. Hudgens, Yuji Murayama, Anurag Bansal, Shaofeng Chen, Michael Kuchar
  • Patent number: 11508610
    Abstract: Methods and apparatus for supporting a substrate are provided herein. In some embodiments, a substrate support to support a substrate having a given diameter includes: a base ring having an inner diameter less than the given diameter, the base ring having a support surface configured to contact a first surface of the substrate and to form a seal between the support surface and the first surface of the substrate, when disposed atop the base ring; and a clamp ring having an inner diameter less than the given diameter, wherein the clamp ring includes a contact surface proximate the inner diameter configured to contact an upper surface of the substrate, when present, and wherein the clamp ring and the base ring are further configured to provide a bias force toward each other to clamp the substrate in the substrate support.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: November 22, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chang Ke, Bonnie Chia, Song-Moon Suh, Cheng-Hsiung Tsai, Yuanhong Guo, Lei Zhou, David Langtry
  • Publication number: 20210339354
    Abstract: A method includes receiving a metal component including a raw surface that includes a metal base, a first native oxide disposed on the metal base, and hydrocarbons disposed on the metal base. The method further includes machining the raw surface of the metal component to remove the first native oxide and a first portion of the hydrocarbons from the metal base. The machining generates an as-machined surface of the metal component including the metal base without the first native oxide and without the first portion of the hydrocarbons. The method further includes performing a surface machining of the as-machined surface of the metal component to remove a second portion of the hydrocarbons. The method further includes surface treating the metal component to remove a third portion of the hydrocarbons. The method further includes performing a cleaning of the metal component and drying the metal component.
    Type: Application
    Filed: April 27, 2021
    Publication date: November 4, 2021
    Inventors: Yuanhong Guo, Sheng Michael Guo, Marek W. Radko, Steven Victor Sansoni, Nagendra Madiwal, Matvey Farber, Pingping Gou, Song-Moon Suh, Jeffrey C. Hudgens, Yuji Murayama, Anurag Bansal, Shaofeng Chen, Michael Kuchar
  • Publication number: 20210305028
    Abstract: A method of cleaning a chamber for an electronics manufacturing system includes flowing a gas mixture comprising oxygen and a carrier gas into a remote plasma generator. The method further includes generating a plasma from the gas mixture by the remote plasma generator and performing a remote plasma cleaning of the chamber by flowing the plasma into an interior of the chamber, wherein the plasma removes a plurality of organic contaminants from the chamber.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 30, 2021
    Inventors: Yuanhong Guo, Sheng Guo, Marek Radko, Steve Sansoni, Xiaoxiong Yuan, See-Eng Phan, Yuji Murayama, Pingping Gou, Song-Moon Suh
  • Publication number: 20200402792
    Abstract: Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Inventors: Chang Ke, Lei Zhou, Biao Liu, Cheng Pan, Yuanhong Guo, Liqi Wu, Michael S. Jackson, Ludovic Godet, Tobin Kaufman-Osborn, Erica Chen, Paul F. Ma
  • Patent number: 10770292
    Abstract: Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Chang Ke, Lei Zhou, Biao Liu, Cheng Pan, Yuanhong Guo, Liqi Wu, Michael S. Jackson, Ludovic Godet, Tobin Kaufman-Osborn, Erica Chen, Paul F. Ma
  • Publication number: 20190326152
    Abstract: Methods and apparatus for supporting a substrate are provided herein. In some embodiments, a substrate support to support a substrate having a given diameter includes: a base ring having an inner diameter less than the given diameter, the base ring having a support surface configured to contact a first surface of the substrate and to form a seal between the support surface and the first surface of the substrate, when disposed atop the base ring; and a clamp ring having an inner diameter less than the given diameter, wherein the clamp ring includes a contact surface proximate the inner diameter configured to contact an upper surface of the substrate, when present, and wherein the clamp ring and the base ring are further configured to provide a bias force toward each other to clamp the substrate in the substrate support.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 24, 2019
    Inventors: CHANG KE, BONNIE CHIA, SONG-MOON SUH, CHENG-HSIUNG TSAI, YUANHONG GUO, LEI ZHOU, DAVID LANGTRY
  • Publication number: 20180366317
    Abstract: Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 20, 2018
    Inventors: Chang Ke, Lei Zhou, Biao Liu, Cheng Pan, Yuanhong Guo, Liqi Wu, Michael S. Jackson, Ludovic Godet, Tobin Kaufman-Osborn, Erica Chen, Paul F. Ma
  • Patent number: 9925639
    Abstract: Disclosed herein are systems and methods for cleaning a ceramic article using a stream of solid carbon dioxide (CO2) particles. A method includes flowing liquid CO2 into a spray nozzle, and directing a first stream of solid CO2 particles from the spray nozzle toward a ceramic article for a first time duration to clean the ceramic article. The liquid CO2 is converted into the first stream of solid CO2 particles upon exiting the spray nozzle. The first stream of solid CO2 particles causes a layer of solid CO2 to be formed on the ceramic article. After the layer of solid CO2 has sublimated, a second stream of solid CO2 particles is directed from the spray nozzle toward the ceramic article for at least one of the first time duration or a second time duration to further clean the ceramic article.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: March 27, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Song-Moon Suh, Yuanhong Guo, Guangchi Xuan, Pulkit Agarwal
  • Publication number: 20160016286
    Abstract: Disclosed herein are systems and methods for cleaning a ceramic article using a stream of solid carbon dioxide (CO2) particles. A method includes flowing liquid CO2 into a spray nozzle, and directing a first stream of solid CO2 particles from the spray nozzle toward a ceramic article for a first time duration to clean the ceramic article. The liquid CO2 is converted into the first stream of solid CO2 particles upon exiting the spray nozzle. The first stream of solid CO2 particles causes a layer of solid CO2 to be formed on the ceramic article. After the layer of solid CO2 has sublimated, a second stream of solid CO2 particles is directed from the spray nozzle toward the ceramic article for at least one of the first time duration or a second time duration to further clean the ceramic article.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 21, 2016
    Inventors: Song-Moon Suh, Yuanhong Guo, Guangchi Xuan, Pulkit Agarwal
  • Publication number: 20080105201
    Abstract: A support component comprises a support structure having a support surface with one or more quartz contact tips. In one version, the support component comprises a robot blade capable of transferring a substrate into and out of a chamber. The robot blade comprises a plate having a plurality of raised mesas, each raised mesa comprising a quartz contact tip which minimizes contact with the substrate thereby generating fewer contaminant particles during substrate transportation. Other versions of the support component include a heat exchange pedestal, lift pin assembly, and lifting fin assembly.
    Type: Application
    Filed: October 29, 2007
    Publication date: May 8, 2008
    Inventors: TIMOTHY RONAN, Yuanhong Guo, Robert Decottignies, Todd W. Martin, Darryl K. Angelo, Song-Moon Suh, Nitin Khurana, Edward Ng