Patents by Inventor Yuanke Luo

Yuanke Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127408
    Abstract: Embodiments are generally directed to an adaptive deformable kernel prediction network for image de-noising. An embodiment of a method for de-noising an image by a convolutional neural network implemented on a compute engine, the image including a plurality of pixels, the method comprising: for each of the plurality of pixels of the image, generating a convolutional kernel having a plurality of kernel values for the pixel; generating a plurality of offsets for the pixel respectively corresponding to the plurality of kernel values, each of the plurality of offsets to indicate a deviation from a pixel position of the pixel; determining a plurality of deviated pixel positions based on the pixel position of the pixel and the plurality of offsets; and filtering the pixel with the convolutional kernel and pixel values of the plurality of deviated pixel positions to obtain a de-noised pixel.
    Type: Application
    Filed: November 20, 2023
    Publication date: April 18, 2024
    Applicant: Intel Corporation
    Inventors: Anbang Yao, Ming Lu, Yikai Wang, Xiaoming Chen, Junjie Huang, Tao Lv, Yuanke Luo, Yi Yang, Feng Chen, Zhiming Wang, Zhiqiao Zheng, Shandong Wang
  • Patent number: 11869171
    Abstract: Embodiments are generally directed to an adaptive deformable kernel prediction network for image de-noising. An embodiment of a method for de-noising an image by a convolutional neural network implemented on a compute engine, the image including a plurality of pixels, the method comprising: for each of the plurality of pixels of the image, generating a convolutional kernel having a plurality of kernel values for the pixel; generating a plurality of offsets for the pixel respectively corresponding to the plurality of kernel values, each of the plurality of offsets to indicate a deviation from a pixel position of the pixel; determining a plurality of deviated pixel positions based on the pixel position of the pixel and the plurality of offsets; and filtering the pixel with the convolutional kernel and pixel values of the plurality of deviated pixel positions to obtain a de-noised pixel.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: January 9, 2024
    Assignee: INTEL CORPORATION
    Inventors: Anbang Yao, Ming Lu, Yikai Wang, Xiaoming Chen, Junjie Huang, Tao Lv, Yuanke Luo, Yi Yang, Feng Chen, Zhiming Wang, Zhiqiao Zheng, Shandong Wang
  • Publication number: 20220253488
    Abstract: Methods, apparatus, systems, and articles of manufacture to process a machine learning model in a web-browser environment are disclosed. An example apparatus includes a graph builder to accumulate machine learning operations as a graph. A tensor manager is to, in response to a request to access a tensor that is not yet available and associated with the machine learning operations, identify the graph based on the tensor. A graph cache manager is to determine whether a condensed graph corresponding to the identified graph is available. A graph condenser is to, in response to the graph cache manager determining that the condensed graph is not available, generate the condensed graph. A graph executor is to execute the condensed graph to create the tensor. The tensor manager is to provide the tensor as a response to the request to access the tensor.
    Type: Application
    Filed: September 27, 2019
    Publication date: August 11, 2022
    Inventors: Jianhui Li, Yong Wu, Ningxin Hu, Yiqiang Li, Yuanke Luo
  • Publication number: 20210352676
    Abstract: Embodiments of this application provide a resource allocation method, a base station, and a terminal. The method includes receiving band information sent by a terminal, where the band information is indicates band types supported by the terminal. Configuration information is sent to the terminal if it is determined that the band information indicates that the band types supported by the terminal include a first band and one or more second bands. The configuration information indicates allocation of the first band and the second band to the terminal, and that the first band is to operate in a supplemental downlink (SDL) mode, where the second band is different from the first band and a third band, and the third band is a band that causes interference to an uplink signal if the uplink signal is on the first band.
    Type: Application
    Filed: July 21, 2021
    Publication date: November 11, 2021
    Applicant: HUAWEI TECHNOLOGIES CO.,LTD.
    Inventors: Chaoyi Yan, Yuanke Luo
  • Publication number: 20210142179
    Abstract: Embodiments are generally directed to dynamically dividing activations and kernels for improving memory efficiency. An embodiment of a method in a compute engine performing machine learning comprises: receiving, by a convolutional layer of a convolutional neural network (CNN) implemented on the compute engine, a plurality of activation groups contained in an input data, wherein the convolutional layer includes one or more kernel groups and the one or more kernel groups each include a plurality of kernels; determining a plurality of memory efficiency metrics based on the number of activation groups of the plurality of activation groups and the number of kernels of the plurality of kernels; selecting a first optimal number of activation groups and a second optimal number of kernels that are associated with an optimal memory efficiency metric in the plurality of memory efficiency metrics; and performing a convolutional operation on the input data based on the first optimal number and the second optimal number.
    Type: Application
    Filed: November 5, 2020
    Publication date: May 13, 2021
    Applicant: Intel Corporation
    Inventors: Xiaoming Chen, Anbang Yao, Junjie Huang, Tao Lv, Yuanke Luo
  • Publication number: 20210142448
    Abstract: Embodiments are generally directed to an adaptive deformable kernel prediction network for image de-noising. An embodiment of a method for de-noising an image by a convolutional neural network implemented on a compute engine, the image including a plurality of pixels, the method comprising: for each of the plurality of pixels of the image, generating a convolutional kernel having a plurality of kernel values for the pixel; generating a plurality of offsets for the pixel respectively corresponding to the plurality of kernel values, each of the plurality of offsets to indicate a deviation from a pixel position of the pixel; determining a plurality of deviated pixel positions based on the pixel position of the pixel and the plurality of offsets; and filtering the pixel with the convolutional kernel and pixel values of the plurality of deviated pixel positions to obtain a de-noised pixel.
    Type: Application
    Filed: November 5, 2020
    Publication date: May 13, 2021
    Applicant: Intel Corporation
    Inventors: Anbang Yao, Ming Lu, Yikai Wang, Xiaoming Chen, Junjie Huang, Tao Lv, Yuanke Luo, Yi Yang, Feng Chen, Zhiming Wang, Zhiqiao Zheng, Shandong Wang