Patents by Inventor Yuanzheng Yue

Yuanzheng Yue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11784236
    Abstract: Methods of fabricating a semiconductor device include providing a semiconductor substrate that includes a plurality of epitaxial layers, including a channel layer and a permanent cap over the channel layer, where the permanent cap defines an upper surface of the semiconductor substrate, and forming a sacrificial cap over the permanent cap in an active region of the device, where the sacrificial cap comprises a semiconductor material that includes aluminum. The method also includes forming one or more current carrying regions (e.g., source and drain regions) in the semiconductor substrate in the active region of the device by performing an ion implantation process to implant ions through the sacrificial cap, and into the semiconductor substrate, completely removing the sacrificial cap in the active region of the device, while refraining from removing the permanent cap, and forming one or more current carrying contacts over the one or more current carrying regions.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: October 10, 2023
    Assignee: NXP USA, Inc.
    Inventors: Jenn Hwa Huang, Yuanzheng Yue, Bruce Mcrae Green, Karen Elizabeth Moore, James Allen Teplik
  • Patent number: 11437301
    Abstract: A device includes a substrate, an insulating layer that includes an etch stop layer formed over an upper surface of the substrate, a first conductive region formed over the insulating layer, and an opening formed within the substrate that extends from a lower surface of the substrate, through the upper surface of the substrate, and through at least a portion the insulating layer, terminating on the first conductive region. A method for forming the device includes forming the substrate, forming the insulating layer that includes the etch stop layer over the upper surface of the substrate, forming a first conductive region over the insulating layer; and forming an opening within the substrate that extends from the lower surface of the substrate, through the upper surface of the substrate, and through at least a portion the insulating layer, terminating on the first conductive region formed over the insulating layer.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: September 6, 2022
    Assignee: NXP USA, Inc.
    Inventors: Yuanzheng Yue, James Allen Teplik, Bruce McRae Green, Fred Reece Clayton
  • Publication number: 20220122903
    Abstract: A device includes a substrate, an insulating layer that includes an etch stop layer formed over an upper surface of the substrate, a first conductive region formed over the insulating layer, and an opening formed within the substrate that extends from a lower surface of the substrate, through the upper surface of the substrate, and through at least a portion the insulating layer, terminating on the first conductive region. A method for forming the device includes forming the substrate, forming the insulating layer that includes the etch stop layer over the upper surface of the substrate, forming a first conductive region over the insulating layer; and forming an opening within the substrate that extends from the lower surface of the substrate, through the upper surface of the substrate, and through at least a portion the insulating layer, terminating on the first conductive region formed over the insulating layer.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 21, 2022
    Inventors: Yuanzheng Yue, James Allen Teplik, Bruce McRae Green, Fred Reece Clayton
  • Publication number: 20220102529
    Abstract: Methods of fabricating a semiconductor device include providing a semiconductor substrate that includes a plurality of epitaxial layers, including a channel layer and a permanent cap over the channel layer, where the permanent cap defines an upper surface of the semiconductor substrate, and forming a sacrificial cap over the permanent cap in an active region of the device, where the sacrificial cap comprises a semiconductor material that includes aluminum. The method also includes forming one or more current carrying regions (e.g., source and drain regions) in the semiconductor substrate in the active region of the device by performing an ion implantation process to implant ions through the sacrificial cap, and into the semiconductor substrate, completely removing the sacrificial cap in the active region of the device, while refraining from removing the permanent cap, and forming one or more current carrying contacts over the one or more current carrying regions.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Inventors: Jenn Hwa Huang, Yuanzheng Yue, Bruce McRae Green, Karen Elizabeth Moore, James Allen Teplik
  • Patent number: 10971613
    Abstract: A semiconductor device includes a base substrate, a doped region at an upper surface of the base substrate, and a transistor over the upper surface of the base substrate and formed from a plurality of epitaxially-grown semiconductor layers. The doped region includes one or more ion species, and has a lower boundary above a lower surface of the base substrate. The base substrate may be a silicon substrate, and the transistor may be a GaN HEMT formed from a plurality of heteroepitaxial layers that include aluminum nitride and/or aluminum gallium nitride. The doped region may be a diffusion barrier region and/or an enhanced resistivity region. The ion species may be selected from phosphorus, arsenic, antimony, bismuth, argon, helium, nitrogen, and oxygen. When the ion species includes oxygen, the doped region may include a silicon dioxide layer formed from annealing the doped region after introduction of the oxygen.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: April 6, 2021
    Assignee: NXP USA, Inc.
    Inventors: Yuanzheng Yue, David Cobb Burdeaux, Jenn Hwa Huang, Bruce McRae Green, James Allen Teplik
  • Patent number: 10957790
    Abstract: A semiconductor device includes a semiconductor substrate configured to include a channel, first and second ohmic contacts supported by the semiconductor substrate, in ohmic contact with a contact region formed within the semiconductor substrate, and spaced from one another for current flow between the first and second ohmic contacts through the channel, and first and second dielectric layers supported by the semiconductor substrate. At least one of the first and second ohmic contacts extends through respective openings in the first and second dielectric layers. The second dielectric layer is disposed between the first dielectric layer and a surface of the semiconductor substrate, and the second dielectric layer includes a wet etchable material having an etch selectivity to a dry etchant of the first dielectric layer.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: March 23, 2021
    Assignee: NXP USA, Inc.
    Inventors: Bruce McRae Green, Darrell Glenn Hill, Karen Elizabeth Moore, Jenn-Hwa Huang, Yuanzheng Yue, James Allen Teplik, Lawrence Scott Klingbeil
  • Publication number: 20200227547
    Abstract: A semiconductor device includes a base substrate, a doped region at an upper surface of the base substrate, and a transistor over the upper surface of the base substrate and formed from a plurality of epitaxially-grown semiconductor layers. The doped region includes one or more ion species, and has a lower boundary above a lower surface of the base substrate. The base substrate may be a silicon substrate, and the transistor may be a GaN HEMT formed from a plurality of heteroepitaxial layers that include aluminum nitride and/or aluminum gallium nitride. The doped region may be a diffusion barrier region and/or an enhanced resistivity region. The ion species may be selected from phosphorus, arsenic, antimony, bismuth, argon, helium, nitrogen, and oxygen. When the ion species includes oxygen, the doped region may include a silicon dioxide layer formed from annealing the doped region after introduction of the oxygen.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Inventors: Yuanzheng Yue, David Cobb Burdeaux, Jenn Hwa Huang, Bruce McRae Green, James Allen Teplik
  • Patent number: 10644142
    Abstract: A semiconductor device includes a base substrate, a doped region at an upper surface of the base substrate, and a transistor over the upper surface of the base substrate and formed from a plurality of epitaxially-grown semiconductor layers. The doped region includes one or more ion species, and has a lower boundary above a lower surface of the base substrate. The base substrate may be a silicon substrate, and the transistor may be a GaN HEMT formed from a plurality of heteroepitaxial layers that include aluminum nitride and/or aluminum gallium nitride. The doped region may be a diffusion barrier region and/or an enhanced resistivity region. The ion species may be selected from phosphorus, arsenic, antimony, bismuth, argon, helium, nitrogen, and oxygen. When the ion species includes oxygen, the doped region may include a silicon dioxide layer formed from annealing the doped region after introduction of the oxygen.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 5, 2020
    Assignee: NXP USA, Inc.
    Inventors: Yuanzheng Yue, David Cobb Burdeaux, Jenn Hwa Huang, Bruce McRae Green, James Allen Teplik
  • Patent number: 10403718
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate that includes a channel, a first dielectric layer disposed over the semiconductor substrate, and a regrown contact formed through a first opening in the first dielectric layer. The regrown contact includes a regrown region formed over the semiconductor substrate, an overhang region coupled to the regrown region and formed over the first dielectric layer, adjacent the first opening, and a conductive cap formed over the regrown region and the overhang region. A method for fabricating the semiconductor device includes forming the first dielectric layer over the semiconductor substrate, forming the first opening in the first dielectric layer, forming a regrown semiconductor layer within the first opening and over the first dielectric layer, forming a conductive cap over the regrown semiconductor layer, and etching the regrown semiconductor layer outside the conductive cap.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 3, 2019
    Assignee: NXP USA, Inc.
    Inventors: Jenn Hwa Huang, Yuanzheng Yue
  • Patent number: 10355085
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate that includes an upper surface and a semiconductor layer, a first dielectric layer disposed over the semiconductor substrate, and a regrown contact formed through a first opening in the first dielectric layer. The regrown contact includes a regrown region formed over the semiconductor substrate, an overhang region coupled to the regrown region and formed over the first dielectric layer, adjacent the first opening, and a conductive cap formed over the regrown region and the overhang region. A method for fabricating the semiconductor device includes forming the first dielectric layer over the semiconductor substrate, forming the first opening in the first dielectric layer, forming a regrown semiconductor layer within the first opening and over the first dielectric layer, forming a conductive cap over the regrown semiconductor layer, and etching the regrown semiconductor layer outside the conductive cap.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: July 16, 2019
    Assignee: NXP USA, Inc.
    Inventors: Jenn Hwa Huang, Yuanzheng Yue
  • Publication number: 20190206998
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate that includes a channel, a first dielectric layer disposed over the semiconductor substrate, and a regrown contact formed through a first opening in the first dielectric layer. The regrown contact includes a regrown region formed over the semiconductor substrate, an overhang region coupled to the regrown region and formed over the first dielectric layer, adjacent the first opening, and a conductive cap formed over the regrown region and the overhang region. A method for fabricating the semiconductor device includes forming the first dielectric layer over the semiconductor substrate, forming the first opening in the first dielectric layer, forming a regrown semiconductor layer within the first opening and over the first dielectric layer, forming a conductive cap over the regrown semiconductor layer, and etching the regrown semiconductor layer outside the conductive cap.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Inventors: Jenn Hwa Huang, Yuanzheng Yue
  • Publication number: 20190206994
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate that includes an upper surface and a semiconductor layer, a first dielectric layer disposed over the semiconductor substrate, and a regrown contact formed through a first opening in the first dielectric layer. The regrown contact includes a regrown region formed over the semiconductor substrate, an overhang region coupled to the regrown region and formed over the first dielectric layer, adjacent the first opening, and a conductive cap formed over the regrown region and the overhang region. A method for fabricating the semiconductor device includes forming the first dielectric layer over the semiconductor substrate, forming the first opening in the first dielectric layer, forming a regrown semiconductor layer within the first opening and over the first dielectric layer, forming a conductive cap over the regrown semiconductor layer, and etching the regrown semiconductor layer outside the conductive cap.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Inventors: Jenn Hwa Huang, Yuanzheng Yue
  • Publication number: 20190198623
    Abstract: A semiconductor device includes a base substrate, a doped region at an upper surface of the base substrate, and a transistor over the upper surface of the base substrate and formed from a plurality of epitaxially-grown semiconductor layers. The doped region includes one or more ion species, and has a lower boundary above a lower surface of the base substrate. The base substrate may be a silicon substrate, and the transistor may be a GaN HEMT formed from a plurality of heteroepitaxial layers that include aluminum nitride and/or aluminum gallium nitride. The doped region may be a diffusion barrier region and/or an enhanced resistivity region. The ion species may be selected from phosphorus, arsenic, antimony, bismuth, argon, helium, nitrogen, and oxygen. When the ion species includes oxygen, the doped region may include a silicon dioxide layer formed from annealing the doped region after introduction of the oxygen.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Yuanzheng Yue, David Cobb Burdeaux, Jenn Hwa Huang, Bruce McRae Green, James Allen Teplik
  • Publication number: 20190157440
    Abstract: A semiconductor device includes a semiconductor substrate configured to include a channel, first and second ohmic contacts supported by the semiconductor substrate, in ohmic contact with a contact region formed within the semiconductor substrate, and spaced from one another for current flow between the first and second ohmic contacts through the channel, and first and second dielectric layers supported by the semiconductor substrate. At least one of the first and second ohmic contacts extends through respective openings in the first and second dielectric layers. The second dielectric layer is disposed between the first dielectric layer and a surface of the semiconductor substrate, and the second dielectric layer includes a wet etchable material having an etch selectivity to a dry etchant of the first dielectric layer.
    Type: Application
    Filed: December 31, 2018
    Publication date: May 23, 2019
    Inventors: Bruce McRae Green, Darrell Glenn Hill, Karen Elizabeth Moore, Jenn-Hwa Huang, Yuanzheng Yue, James Allen Teplik, Lawrence Scott Klingbeil
  • Publication number: 20110159219
    Abstract: The present invention relates to a silicate glass article, such as a glass container, with a modified surface region. The modified surface has, among other advantageous properties, an improved chemical durability, an increased hardness, and/or an increased thermal stability, such as thermal shock resistance. In particular the present invention relates to a process for modifying a surface region of a silicate glass article by heat-treatment at Tg in a reducing gas atmosphere such as H2/N2 (1/99). The concentration of network-modifying cations (NMC) in the surface region of the silicate glass article is lower than in the bulk part, and the composition in the surface region of the network-modifying cations is a consequence of an inward diffusion.
    Type: Application
    Filed: September 3, 2009
    Publication date: June 30, 2011
    Applicant: AALBORG UNIVERSITET
    Inventors: Yuanzheng Yue, Morten Mattrup Smedskjaer