Patents by Inventor Yudai OTA

Yudai OTA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11213792
    Abstract: A spiral-wound type gas separation membrane element includes a central tube and a laminate wound around the central tube. Laminate includes at least one structure where a feed-side flow path member, a gas separation membrane, and a permeate-side flow path member are superimposed in this order. Permeate-side flow path member has a thickness of 400 ?m to 1300 ?m. Gas separation membrane is a membrane where a hydrophilic resin composition layer, a porous layer, and a permeate-side surface layer are superimposed in this order. Permeate-side surface layer faces Permeate-side flow path member and has a Young's modulus of 20 MPa to 400 MPa.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: January 4, 2022
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Takenori Kitaura, Yudai Ota
  • Publication number: 20200316529
    Abstract: A method of producing a DN gel membrane includes a step (1) including producing a 1st gel membrane by (i) casting, on a substrate, a solution containing an ionic liquid A and an ionic liquid B, the ionic liquid A being made up of 1st monomers each of which has a polymerizable functional group and (ii) polymerizing the 1st monomers; and a step (2) including producing the DN gel membrane by (i) immersing the 1st gel membrane in a solution containing 2nd monomers which are different from the 1st monomers and (ii) polymerizing the 2nd monomers. This method allows for continuous-type production which is suitable for industrial mass production of DN gel membranes or acid gas separation membranes.
    Type: Application
    Filed: May 29, 2017
    Publication date: October 8, 2020
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Shohei KASAHARA, Yudai OTA, Hideto MATSUYAMA, Eiji KAMIO, Farhad MOGHADAM
  • Patent number: 10744454
    Abstract: Provided are a CO2 gas separation membrane, a method for manufacturing the same, and a carbon dioxide gas separation membrane module including the same, the CO2 gas separation membrane including: a first layer (A) containing at least one alkali metal compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate and an alkali metal hydroxide, and a first resin in which a polymer having a carboxyl group has been crosslinked; a second layer (B) containing at least one of the alkali metal compounds, and a second resin having a structural unit derived from a vinyl ester of a fatty acid; and a hydrophobic porous membrane (C).
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: August 18, 2020
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai Ota, Yoshihito Okubo, Osamu Okada, Nobuaki Hanai, Peng Yan, Yasato Kiyohara
  • Publication number: 20200122090
    Abstract: A spiral-wound type gas separation membrane element includes a central tube and a laminate wound around the central tube. Laminate includes at least one structure where a feed-side flow path member, a gas separation membrane, and a permeate-side flow path member are superimposed in this order. Permeate-side flow path member has a thickness of 400 ?m to 1300 ?m. Gas separation membrane is a membrane where a hydrophilic resin composition layer, a porous layer, and a permeate-side surface layer are superimposed in this order. Permeate-side surface layer faces Permeate-side flow path member and has a Young's modulus of 20 MPa to 400 MPa.
    Type: Application
    Filed: September 21, 2018
    Publication date: April 23, 2020
    Inventors: Takenori KITAURA, Yudai OTA
  • Patent number: 10507434
    Abstract: The present invention provides a composition for a CO2 gas separation membrane containing: at least one compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate, and an alkali metal hydroxide; a crosslinked polymer in which a polymer having a carboxyl group has been crosslinked; and a non-crosslinked polymer obtained by polymerization of one or more monomers selected from the group consisting of vinyl acetate, acrylic acid, methacrylic acid, and a derivative thereof.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: December 17, 2019
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai Ota, Yoshihito Okubo, Osamu Okada, Nobuaki Hanai, Peng Yan, Yasato Kiyohara, Atsushi Yamamoto
  • Patent number: 10441917
    Abstract: Provided is a method for separating, from a raw gas containing a specific gas, the specific gas using a gas separation membrane module. The gas separation membrane module includes a housing and a gas separation membrane element enclosed in the housing. The gas separation membrane element includes a gas separation membrane including a hydrophilic resin composition layer for selectively allowing for permeation of the specific gas. The method includes the steps of: increasing pressure in an interior of the gas separation membrane module; increasing a temperature in the interior of the gas separation membrane module; and feeding a raw gas to the interior of the gas separation membrane module in that order.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: October 15, 2019
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Takenori Kitaura, Hisaaki Miyamoto, Yudai Ota, Takehiro Nakasuji, Osamu Okada, Masaaki Teramoto
  • Patent number: 10315156
    Abstract: Provided is a method for separating a specific gas from a raw gas using a gas separation membrane module that includes a gas separation membrane element enclosed in a housing. The element includes a gas separation membrane including a hydrophilic resin composition layer. The method includes: preparing the module; increasing pressure in an interior of the module; increasing a temperature in the interior; and feeding a raw gas to the interior. The layer of the module prepared is adjusted to contain moisture, and a moisture content thereof is an amount that allows an equilibrium relative humidity at a temperature of 23° C. of a gas phase portion in the housing to be 10% RH or more. The raw gas feeding step is performed after the preparation step. The pressure increase step and the temperature increase step are performed after the preparation step and before the raw gas feeding step.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: June 11, 2019
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Takenori Kitaura, Hisaaki Miyamoto, Yudai Ota, Takehiro Nakasuji
  • Publication number: 20190083926
    Abstract: Provided is a method for separating, from a raw gas containing a specific gas, the specific gas using a gas separation membrane module. The gas separation membrane module includes a housing and a gas separation membrane element enclosed in the housing. The gas separation membrane element includes a gas separation membrane including a hydrophilic resin composition layer for selectively allowing for permeation of the specific gas. The method includes the steps of: increasing pressure in an interior of the gas separation membrane module; increasing a temperature in the interior of the gas separation membrane module; and feeding a raw gas to the interior of the gas separation membrane module in that order.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 21, 2019
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Takenori KITAURA, Hisaaki MIYAMOTO, Yudai OTA, Takehiro NAKASUJI, Osamu OKADA, Masaaki TERAMOTO
  • Publication number: 20190083925
    Abstract: Provided is a method for separating a specific gas from a raw gas using a gas separation membrane module that includes a gas separation membrane element enclosed in a housing. The element includes a gas separation membrane including a hydrophilic resin composition layer. The method includes: preparing the module; increasing pressure in an interior of the module; increasing a temperature in the interior; and feeding a raw gas to the interior. The layer of the module prepared is adjusted to contain moisture, and a moisture content thereof is an amount that allows an equilibrium relative humidity at a temperature of 23° C. of a gas phase portion in the housing to be 10% RH or more. The raw gas feeding step is performed after the preparation step. The pressure increase step and the temperature increase step are performed after the preparation step and before the raw gas feeding step.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 21, 2019
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Takenori KITAURA, Hisaaki MIYAMOTO, Yudai OTA, Takehiro NAKASUJI
  • Patent number: 10232319
    Abstract: The present invention provides a composition for a CO2 gas separation membrane containing: at least one compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate, and an alkali metal hydroxide; a crosslinked polymer in which a polymer having a carboxyl group has been crosslinked; and a non-crosslinked polymer obtained by polymerization of one or more monomers selected from the group consisting of vinyl acetate, acrylic acid, methacrylic acid, and a derivative thereof.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: March 19, 2019
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai Ota, Yoshihito Okubo, Osamu Okada, Nobuaki Hanai, Peng Yan, Yasato Kiyohara, Atsushi Yamamoto
  • Patent number: 10092880
    Abstract: A spiral-wound acid gas separation membrane element (1) includes a wound body which includes a laminate and a perforated core (5), the laminate being wound around the perforated core tube (5) and including: a separation membrane (2), a feed-side channel component (3), and an element constituent layer (e.g., permeate-side channel component (4)). The separation membrane (2) is provided with a sealing section (25) present at both widthwise ends of the separation membrane (2). The sealing section (25) is sealed with an adhesive. This makes it possible not only to separate acid gas from mixed gas more efficiently as compared to a conventional spiral-wound acid gas separation membrane element but also to save energy.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: October 9, 2018
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshihito Okubo, Atsushi Shudo, Yudai Ota, Shohei Kasahara
  • Publication number: 20180178166
    Abstract: A spiral-wound acid gas separation membrane element (1) includes a wound body which includes a laminate and a perforated core (5), the laminate being wound around the perforated core tube (5) and including: a separation membrane (2), a feed-side channel component (3), and an element constituent layer (e.g., permeate-side channel component (4)). The separation membrane (2) is provided with a sealing section (25) present at both widthwise ends of the separation membrane (2). The sealing section (25) is sealed with an adhesive. This makes it possible not only to separate acid gas from mixed gas more efficiently as compared to a conventional spiral-wound acid gas separation membrane element but also to save energy.
    Type: Application
    Filed: May 27, 2016
    Publication date: June 28, 2018
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshihito OKUBO, Atsushi SHUDO, Yudai OTA, Shohei KASAHARA
  • Publication number: 20170333833
    Abstract: Provided are a CO2 gas separation membrane, a method for manufacturing the same, and a carbon dioxide gas separation membrane module including the same, the CO2 gas separation membrane including: a first layer (A) containing at least one alkali metal compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate and an alkali metal hydroxide, and a first resin in which a polymer having a carboxyl group has been crosslinked; a second layer (B) containing at least one of the alkali metal compounds, and a second resin having a structural unit derived from a vinyl ester of a fatty acid; and a hydrophobic porous membrane (C).
    Type: Application
    Filed: November 17, 2015
    Publication date: November 23, 2017
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai OTA, Yoshihito OKUBO, Osamu OKADA, Nobuaki HANAI, Peng YAN, Yasato KIYOHARA
  • Publication number: 20170232398
    Abstract: The present invention provides a composition for a CO2 gas separation membrane containing: at least one compound selected from the group consisting of an alkali metal carbonate, an alkali metal bicarbonate, and an alkali metal hydroxide; a crosslinked polymer in which a polymer having a carboxyl group has been crosslinked; and a non-crosslinked polymer obtained by polymerization of one or more monomers selected from the group consisting of vinyl acetate, acrylic acid, methacrylic acid, and a derivative thereof.
    Type: Application
    Filed: August 6, 2015
    Publication date: August 17, 2017
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Yudai OTA, Yoshihito OKUBO, Osamu OKADA, Nobuaki HANAI, Peng YAN, Yasato KIYOHARA, Atsushi YAMAMOTO