Patents by Inventor Yuehe Lin

Yuehe Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230124515
    Abstract: Single atom nanozymes and associated immunoassays, method of making, and method of using such immunoassays are described herein. For example, a method of making a single atom nanozyme includes forming a soft template having multiple nanoscale structures in an aqueous solution and adding a monomer and a metal containing salt into the aqueous solution. The metal containing salt causes polymerization of the monomer to form multiple nanostructures according to the nanoscale structures of the soft template. The method also includes coating the individual formed nanostructures with a confinement layer in the aqueous solution before pyrolyzing. During pyrolysis, the confinement layer at least restricts or completely prevents migration of atoms on the external surface of the individual nanostructures.
    Type: Application
    Filed: October 11, 2022
    Publication date: April 20, 2023
    Inventors: Dan Du, Yuehe Lin, Zhaoyuan Lyu, Shichao Ding
  • Publication number: 20220276237
    Abstract: The disclosure relates to antigen detection reagents and related methods, systems, and kits. The reagents comprise an antigen-binding molecule conjugated to an inorganic component. In some embodiments, the inorganic component possesses catalytic functionality to provide a detectable signal. In some embodiments, the catalytic inorganic component is or comprises a bimetallic nanoparticle. In other embodiments, the inorganic component is a nanoflowers that provides a physical scaffold onto which the antigen-binding component and a reporter component can be loaded, resulting in augmented antigen-binding and reporting capabilities.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 1, 2022
    Applicant: Washington State University
    Inventors: Yuehe Lin, Dan Du, Yang Song, Ranfeng Ye
  • Patent number: 11307198
    Abstract: The disclosure relates to antigen detection reagents and related methods, systems, and kits. The reagents comprise an antigen-binding molecule conjugated to an inorganic component. In some embodiments, the inorganic component possesses catalytic functionality to provide a detectable signal. In some embodiments, the catalytic inorganic component is or comprises a bimetallic nanoparticle. In other embodiments, the inorganic component is a nanoflowers that provides a physical scaffold onto which the antigen-binding component and a reporter component can be loaded, resulting in augmented antigen-binding and reporting capabilities.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 19, 2022
    Assignee: Washington State University
    Inventors: Yuehe Lin, Dan Du, Yang Song, Ranfeng Ye
  • Publication number: 20190262275
    Abstract: Materials and methods are described for forming self-assembled peptoid structures that are extremely stable, crystalline, free-standing and self-repairing are described. Based on the peptoid design, peptoid membranes in a 2D arrangement were able to roll into single-walled nanotubes with tunable sizes, diameters, thicknesses and stiffnesses as well as tailorable functions result. Crystalline nanomaterials made through this facile solution crystallization and anisotropic formation process are highly tailorable and exhibit a number of properties advantageous for applications such as water decontamination, cellular adhesion, imaging, surface coating, biosensing, energy conversion, biocatalysis or other applications.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Applicants: BATTELLE MEMORIAL INSTITUTE, WASHINGTON STATE UNIVERSITY
    Inventors: Chunlong Chen, Mingming Wang, Teng-Yue Jian, Haibao Jin, Yuehe Lin, Yang Song, Dan Du
  • Publication number: 20170336398
    Abstract: The disclosure relates to antigen detection reagents and related methods, systems, and kits. The reagents comprise an antigen-binding molecule conjugated to an inorganic component. In some embodiments, the inorganic component possesses catalytic functionality to provide a detectable signal. In some embodiments, the catalytic inorganic component is or comprises a bimetallic nanoparticle. In other embodiments, the inorganic component is a nanoflowers that provides a physical scaffold onto which the antigen-binding component and a reporter component can be loaded, resulting in augmented antigen-binding and reporting capabilities.
    Type: Application
    Filed: April 24, 2017
    Publication date: November 23, 2017
    Applicant: Washington State University
    Inventors: Yuehe Lin, Dan Du, Yang Song, Ranfeng Ye
  • Publication number: 20090288962
    Abstract: A mercury-free, electrochemical sensor is described that includes a self-assembled monolayer on a mesoporous support (SAMMS) composite and a fluoropolymer component that is deposited on a measurement surface. The SAMMS component provides outstanding metal preconcentration. The fluoropolymer component acts as an antifouling binder. The sensor can detect various metals at a low detection level in the presence of fouling agents and without sample pretreatment. The sensor is also able to detect mixtures of metals simultaneously with excellent single and inter-electrode reproducibility. Service lifetimes are excellent.
    Type: Application
    Filed: April 21, 2009
    Publication date: November 26, 2009
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wassana Yantasee, Glen E. Fryxell, Raymond S. Addleman, Yuehe Lin, Charles Timchalk
  • Publication number: 20080292545
    Abstract: Apoferritin nanoparticles with functionalized surfaces have been prepared that include preselected agents within the cavity of the apoferritin molecule and preselected functionalized surface characteristics on the outer surface of the nanoparticle. Such materials provide for utilization and selective modification in a variety of applications including therapeutic and diagnostic uses. Examples of several of these applications are described herein. In addition a method for the creation of these materials by alternatively assembling, functionalizing, or functionalizing, disassembling and reassemblying the materials provides for creative customization of various types of materials applicable for varying types of applications which are also described herein.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 27, 2008
    Inventors: Yuehe Lin, Guodong Liu, Hong Wu, Jun Wang, Darrell R. Fisher
  • Patent number: 7452452
    Abstract: The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: November 18, 2008
    Assignee: The Trustees of Boston College
    Inventors: Zhifeng Ren, Yuehe Lin, Wassana Yantasee, Guodong Liu, Fang Lu, Yi Tu
  • Publication number: 20080220244
    Abstract: Embodiments of nanostructures and nanocomposites and embodiments of methods for forming and modifying these nanostructures and nanocomposites are disclosed. The methods can include transporting a metal, metallic compound or precursor to a surface of a nanostructure substrate in a carrier while the carrier is in supercritical fluid form. Embodiments of the disclosed methods can be used to form catalytic structures, such as catalytic structures including nanostructure supports and catalytic metallic nanoparticles attached to the nanostructure supports. These catalytic structures are useful for catalyzing reactions in fuel cell applications, such as oxygen reduction and methanol oxidation reactions. Some of the disclosed nanostructures and nanocomposites include carbon nanotubes.
    Type: Application
    Filed: January 21, 2005
    Publication date: September 11, 2008
    Inventors: Chien M Wai, Xiang-Rong Ye, Yuehe Lin
  • Patent number: 7122106
    Abstract: A method for producing an array of oriented nanofibers that involves forming a solution that includes at least one electroactive species. An electrode substrate is brought into contact with the solution. A current density is applied to the electrode substrate that includes at least a first step of applying a first substantially constant current density for a first time period and a second step of applying a second substantially constant current density for a second time period. The first and second time periods are of sufficient duration to electrically deposit on the electrode substrate an array of oriented nanofibers produced from the electroactive species. Also disclosed are films that include arrays or networks of oriented nanofibers and a method for amperometrically detecting or measuring at least one analyte in a sample.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: October 17, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Yuehe Lin, Liang Liang, Jun Liu
  • Publication number: 20060021879
    Abstract: A method for producing an array of oriented nanofibers that involves forming a solution that includes at least one electroactive species. An electrode substrate is brought into contact with the solution. A current density is applied to the electrode substrate that includes at least a first step of applying a first substantially constant current density for a first time period and a second step of applying a second substantially constant current density for a second time period. The first and second time periods are of sufficient duration to electrically deposit on the electrode substrate an array of oriented nanofibers produced from the electroactive species. Also disclosed are films that include arrays or networks of oriented nanofibers and a method for amperometrically detecting or measuring at least one analyte in a sample.
    Type: Application
    Filed: September 22, 2005
    Publication date: February 2, 2006
    Inventors: Yuehe Lin, Liang Liang, Jun Liu
  • Publication number: 20050230270
    Abstract: The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use.
    Type: Application
    Filed: December 20, 2004
    Publication date: October 20, 2005
    Inventors: Zhifeng Ren, Yuehe Lin, Wassana Yantasee, Guodong Liu, Fang Lu
  • Patent number: 6831274
    Abstract: A method and apparatus that utilizes two or more emitters simultaneously to form an electrospray of a sample that is then directed into a mass spectrometer, thereby increasing the total ion current introduced into an electrospray ionization mass spectrometer, given a liquid flow rate of a sample. The method and apparatus are most conveniently constructed as an array of spray emitters fabricated on a single chip, however, the present invention encompasses any apparatus wherein two or more emitters are simultaneously utilized to form an electrospray of a sample that is then directed into a mass spectrometer.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: December 14, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Richard D. Smith, Keqi Tang, Yuehe Lin
  • Patent number: 6699384
    Abstract: Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating “plug and play” concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: March 2, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Yuehe Lin, Wendy D. Bennett, Charles Timchalk, Karla D. Thrall
  • Publication number: 20030217928
    Abstract: A method for producing an array of oriented nanofibers that involves forming a solution that includes at least one electroactive species. An electrode substrate is brought into contact with the solution. A current density is applied to the electrode substrate that includes at least a first step of applying a first substantially constant current density for a first time period and a second step of applying a second substantially constant current density for a second time period. The first and second time periods are of sufficient duration to electrically deposit on the electrode substrate an array of oriented nanofibers produced from the electroactive species. Also disclosed are films that include arrays or networks of oriented nanofibers and a method for amperometrically detecting or measuring at least one analyte in a sample.
    Type: Application
    Filed: May 23, 2002
    Publication date: November 27, 2003
    Applicant: Battelle Memorial Institute
    Inventors: Yuehe Lin, Liang Liang, Jun Liu
  • Publication number: 20030168591
    Abstract: A method and apparatus that utilizes two or more emitters simultaneously to form an electrospray of a sample that is then directed into a mass spectrometer, thereby increasing the total ion current introduced into an electrospray ionization mass spectrometer, given a liquid flow rate of a sample. The method and apparatus are most conveniently constructed as an array of spray emitters fabricated on a single chip, however, the present invention encompasses any apparatus wherein two or more emitters are simultaneously utilized to form an electrospray of a sample that is then directed into a mass spectrometer.
    Type: Application
    Filed: March 5, 2002
    Publication date: September 11, 2003
    Inventors: Richard D. Smith, Keqi Tang, Yuehe Lin
  • Patent number: 6132491
    Abstract: A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: October 17, 2000
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Fred H. Hunt, Neil G. Smart, Yuehe Lin
  • Patent number: 5840193
    Abstract: Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: November 24, 1998
    Assignee: Idaho Research Foundation
    Inventors: Neil G. Smart, Chien M. Wai, Yuehe Lin, Yak Hwa Kwang
  • Patent number: 5792357
    Abstract: A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: August 11, 1998
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Neil G. Smart, Yuehe Lin
  • Patent number: 5770085
    Abstract: A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: June 23, 1998
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Neil G. Smart, Yuehe Lin