Patents by Inventor Yuetsu Murakami

Yuetsu Murakami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8684594
    Abstract: A constant-modulus alloy, which has a low saturation magnetic flux density to provide weakly magnetic properties, a high Young's modulus, a low temperature coefficient of Young's modulus, and high hardness, is provided. A hairspring, a mechanical driving apparatus and a watch and clock, in which the alloy is used, are provided. The alloy consists of Co, Ni, Cr, Mo. and Fe. The alloy is healed and cooled before being subjected to repeated wiredrawing and intermediate annealing, forming a wire with a fiber structure having a <111> fiber axis. The wire is then cold rolled into a sheet and heated to obtain optimal magnetic insensitivity and hardness.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: April 1, 2014
    Assignees: The Foundation: The Research Institute for Electric and Magnetic Materials, Seiko Instruments Inc.
    Inventors: Yuetsu Murakami, Koichiro Jujo, Osamu Takahashi, Jun Tsuneyoshi, Ryo Sugawara, Takeshi Takano
  • Publication number: 20110286312
    Abstract: [Task] A constant-modulus alloy, which has a low saturation magnetic flux density to provide weakly magnetic properties, a high Young's modulus, a low temperature coefficient of Young's modulus, and high hardness, is provided. A hairspring, a mechanical driving apparatus and a watch and clock, in which the alloy is used, are provided. [Means for Solution] The alloy consists essentially of, by atomic weight ratio, 20 to 40% Co and 7 to 22% Ni, with the total of Co and Ni being 42.0 to 49.5%, 5 to 13% Cr and 1 to 6% Mo, with the total of Cr and Mo being 13.5 to 16.0%, and with the balance being essentially Fe (with the proviso that Fe is present in an amount of 37% or more) and inevitable impurities. The alloy is heated to a temperature of 1100 degrees C. or higher and lower than the melting point, followed by cooling. The alloy is subsequently subjected to repeated wiredrawing and intermediate annealing at 800 to 950 degrees C., thereby forming a wire at a working ratio of 90% or more.
    Type: Application
    Filed: November 16, 2009
    Publication date: November 24, 2011
    Applicants: SEIKO INSTRUMENTS INC., FOUNDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
    Inventors: Yuetsu Murakami, Koichiro Jujo, Osamu Takahashi, Jun Tsuneyoshi, Ryo Sugawara, Takeshi Takano
  • Patent number: 5849113
    Abstract: High temperature coefficient of resistance (TCR) appropriate for the sensor evices is attained by an alloy consisting, by atomic %, of from 5 to 65% of Fe, and from 0.01 to 20% in total of at least one auxiliary component selected from the group consisting of 20% or less of Ni, 20% or less of Co, 20% or less of Ag, 20% or less of Au, 20% or less of Pt, 10% or less of Rh, 10% or less of Ir, 10% or less of Os, 10% or less of Ru, 10% or less of Cr, 5% or less of V, 5% or less of Ti, 5% or less of Zr, 5% or less of Hf, 8% or less of Mo, 5% or less of Nb, 10% or less of W, 8% or less of Ta, 3% or less of Ga, 3% or less of Ge, 3% or less of In, 3% or less of Be, 5% or less of Sn, 3% or less of Sb, 5% or less of Cu, 5% or less of Al, 5% or less of Si, 2% or less of C, 2% or less of B, and 5% or less of a rare earth element, the balance being essentially Pd and minor amount of impurities, and said alloy having 4000.times.10.sup.-6.degree. C..sup.-1 or more of TCR in a temperature range of from 0.degree. to 200.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: December 15, 1998
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Yuetsu Murakami, Katashi Masumoto, Naoji Nakamura
  • Patent number: 5725687
    Abstract: The present invention relates to a wear-resistant high permeability alloy nsisting of Ni, Nb, C and Fe, a wear-resistant high permeability alloy consisting of Ni, Nb, C and Fe as main components and at least one element selected from the group consisting of Cr, Mo, Ge, Au, Co, V, W, Cu, Ta, Mn, Al, Si, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, Zn, Cd, rare earth element, platinum element, Be, Ag, Sr, B, P, N, O, S as a secondary component and a method of manufacturing the same and a magnetic recording and reproducing head, and an object of the invention is to obtain an excellent wear-resistant magnetic alloy having easy forging processability, a large effective permeability, a saturated flux density of more than 4000G, and a recrystallization texture of {110}<112>+{311}<112>+{111}<112>, and a wear-resistant high permeability alloy consisting by weight of Ni 60-90%, Nb 0.5-14%, C 0.0003-0.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: March 10, 1998
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Yuetsu Murakami, Katashi Masumoto
  • Patent number: 5547520
    Abstract: The present invention provides a method for manufacturing a wear resistant igh permeability alloy consisting by weight of 60-90% Ni, 0.5-14% Nb, 0.0003-0.3% N and O in total (excluding 0% of N or O), and a remainder of Fe. The alloy has more than 3000 of effective permeability at 1 KHz, more than 4000 G of a saturated flux density and a recrystallization texture of {110}<112>+{311}<112>.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: August 20, 1996
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Yuetsu Murakami, Katashi Masumoto
  • Patent number: 5496419
    Abstract: The present invention provides a wear resistant high permeability magnetic lloy Ni, Nb, N, O and Fe as main components. The alloy may include secondary components of at least one element selected from the group consisting of Cr, Mo, Ge, Au, Co, V, W, Cu, Ta, Mn, Al, Si, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, Zn, Cd, rare earth element, platinum element, Be, Ag, Sr, Ba, B, P, C and S. The magnetic alloy has good wear resistance having easy forgeability, a large effective permeability, more than 4000 G of a saturated flux density and a recrystallization texture of {110}<112>+{311}<112>.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: March 5, 1996
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Yuetsu Murakami, Katashi Masumoto
  • Patent number: 4834813
    Abstract: A wear-resistant alloy of high permeability having an effective permeabil of at least about 3,000 at 1 KHz, a saturation magnetic flux density of at least about 4,000 G, and a recrystallization texture of {110}<112>+{311}<112> is provided. The alloy is produced by cold working a forged or hot worked ingot of an alloy of a desired composition at a cold working ratio of at least about 50%, heating the cold worked alloy at a temperature which is below the m.p. of the alloy and not less than about 900.degree. C. and cooling the heated alloy from a temperature which is not less than an order-disorder transformation point (about 600.degree. C.) of the alloy. Alternatively, the alloy is produced by reheating the cooled alloy to a temperature which is not over than the order-disorder transformation point, and cooling the reheated alloy.
    Type: Grant
    Filed: April 14, 1988
    Date of Patent: May 30, 1989
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami
  • Patent number: 4830685
    Abstract: A wear-resistant alloy of high permeability having an effective permeabil of at least about 3,000 at 1 KHz, a saturation magnetic flux density of at least about 4,000 G, and a recrystallization texture of {110}<112>+{311}<112> is provided. The alloy is produced by cold working a forged or hot worked ingot of an alloy of a desired composition at a cold working ratio of at least about 50%, heating the cold worked alloy at a temperature which is below the m.p. of the alloy and not less than about 900.degree. C., and cooling the heated alloy from a temperature which is not less than an order-disorder transformation point (about 600.degree. C.) of the alloy. Alternatively, the alloy is produced by reheating the cooled alloy to a temperature which is not over than the order-disorder transformation point, and cooling the reheated alloy.
    Type: Grant
    Filed: August 19, 1987
    Date of Patent: May 16, 1989
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami
  • Patent number: 4710243
    Abstract: A wear-resistant alloy of high permeability having an effective permeabil of at least about 3,000 at 1 KHz, a saturation magnetic flux density of at least about 4,000 G, and a recrystallization texture of {110}<112>+{311}<112> is provided. The alloy is produced by cold working a forged or hot worked ingot of an alloy of a desired composition at a cold working ratio of at least about 50%, heating the cold worked alloy at a temperature which is below the m.p. of the alloy and not less than about 900.degree. C., and cooling the heated alloy from a temperature which is not less than an order-disorder transformation point (about 600.degree. C.) of the alloy. Alternatively, the alloy is produced by reheating the cooled alloy to a temperature which is not over than the order-disorder transformation point, and cooling the reheated alloy.
    Type: Grant
    Filed: July 29, 1985
    Date of Patent: December 1, 1987
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami
  • Patent number: 4572750
    Abstract: The disclosed magnetic alloy essentially consists of 60-86% of nickel (Ni), .5-14% of niobium (Nb), 0.001-5% in sum of at least one element selected from the group consisting of gold, silver, platinum group elements, gallium, indium, thallium, strontium, and barium, and the balance of iron with a trace of impurities, which alloy renders magnetic properties suitable for recording-and-reproducing head upon specific heat treatment.
    Type: Grant
    Filed: June 25, 1984
    Date of Patent: February 25, 1986
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami
  • Patent number: 4440720
    Abstract: A magnet alloy useful for a magnetic recording and reproducing head consist f by weight of 70 to 86% of nickel, more than 1% and less than 14% of niobium, and 0.001 to 3% of beryllium as main ingredients and 0.01 to 10% of total amount of subingredients selected from the group consisting of not more than 8% of molybdenum, not more than 7% of chromium, not more than 10% of tungsten, not more than 7% of titanium, not more than 7% of vanadium, not more than 10% of manganese, not more than 7% of germanium, not more than 5% of zirconium, not more than 2% of rare earth metal, not more than 10% of tantalum, not more than 1% of boron, not more than 5% of aluminum, not more than 5% of silicon, not more than 5% of tin, not more than 5% of antimony, not more than 10% of cobalt and not more than 10% of copper, a small amount of impurities and the remainder iron and having initial permeability of more than 3,000, maximum permeability of more than 5,000, and Vickers hardness of more than 130.
    Type: Grant
    Filed: September 9, 1981
    Date of Patent: April 3, 1984
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami
  • Patent number: 4082579
    Abstract: A rectangular hysteresis magnetic alloy consisting of 0.5-25 wt. % of Ta the balance of Fe and a rectangular hysteresis magnetic alloy consisting of 0.5-25 wt. % of Ta, 0.01-60 wt. % in total amount of at least one element selected from the group consisting of 0-10% of V, 0-0.5% of Nb, 0-35% of Cr, 0-20% of Mo, 0-20% of W, 0-25% of Ni, 0-25% of Cu, 0-40% of Co, 0-5% of Ti, 0-5% of Zr, 0-5% of Si, 0-10% of Al, 0-5% of Ge, 0-5% of Sn, 0-5% of Sb, 0-3% of Be, 0-15% of Mn, 0-2% of Ce and 0-1.5% of C, and the balance of Fe have an excellent rectangular hysteresis loop, a coercive force of more than 2 oerstads, excellent forgeability and workability, and are particularly suitable as a magnetic material for electromagnetic devices requiring rectangular hysteresis loop.
    Type: Grant
    Filed: October 29, 1976
    Date of Patent: April 4, 1978
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami, Naoji Nakamura
  • Patent number: 4065330
    Abstract: A heat treated, wear-resistant high-permeability alloy consisting of Si, at least one element selected from Y and La series elements and Fe, and a heat treated, wear-resistant high-permeability alloy consisting of Si, Al, at least one element selected from Y and La series elements and Fe as main ingredients and containing at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, W, Cu, Ge, Ti, Ni, Co, Mn, Zr, Sn, Sb, Be and Pb as subingredients, have an initial permeability of more than 1,000, a maximum permeability of more than 3,000, a hardness of more than 490 (Hv) and an average grain size of smaller than 2 mm, and are particularly suitable as a magnetic material for magnetic heads in magnetic recording and reproducing systems.
    Type: Grant
    Filed: February 22, 1977
    Date of Patent: December 27, 1977
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami
  • Patent number: 4059462
    Abstract: A rectangular hysteresis magnetic alloy consisting of 0.5-10 wt. % of Nb the balance of Fe and a rectangular hysteresis magnetic alloy consisting of 0.5-10 wt. % of Nb, 0.01-60 wt. % in total amount of at least one element selected from the group consisting of 0-10% of V, 0-25% of Ta, 0-25% of Cr, 0-20% of Mo, 0-10% of W, 0-30% of Ni, 0-20% of Cu, 0-45% of Co, 0-5% of Ti, 0-5% of Zr, 0-5% of Si, 0-5% of Al, 0-5% of Ge, 0-5% of Sn, 0-5% of Sb, 0-3% of Be, 0-15% of Mn, 0-2% of Ce and 0-1.5% of C, and the balance of Fe have an excellent rectangular hysteresis loop, a coercive force of more than 2 oersteds, excellent forgeability and workability and are particularly suitable as a magnetic material for electromagnetic devices requiring rectangular hysteresis loop.
    Type: Grant
    Filed: October 29, 1976
    Date of Patent: November 22, 1977
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami, Naoji Nakamura