Patents by Inventor Yuezhong Ma

Yuezhong Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10737322
    Abstract: The present invention relates to a composite tantalum powder and a process for preparing the same, and to a capacitor anode prepared from the tantalum powder. The method for preparing a composite tantalum powder comprises the following steps of: 1) providing a tantalum powder prepared by a reduction process, and flattening the tantalum powder so as to prepare a flaked tantalum powder; 2) providing a granular tantalum powder prepared from tantalum ingot; 3) mixing the flaked tantalum powder and the granular tantalum powder to give a tantalum powder mixture; and 4) thermally treating the tantalum powder mixture, and then pulverizing, screening to give a composite tantalum powder. The present invention further relates to a composite tantalum powder prepared from the process and the use thereof in a capacitor.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: August 11, 2020
    Assignees: Ningzia Orient Tanatum Industry Co., Ltd., National Engineering Research Center for Special Metal Materials of Tantalim and Niobium
    Inventors: Guoqi Yang, Aiguo Zheng, Yuezhong Ma
  • Publication number: 20190308247
    Abstract: Provided are a flaked tantalum powder and method for preparation thereof; said flaked tantalum powder contains 300-1800 ppm of nitrogen, 10-100 ppm of phosphorus, and 1-40 ppm of boron. The flaked tantalum powder has high capacity and low leakage current, good puncture-resistance, and particularly outstanding high-frequency attributes. Doping with nitrogen during oxygen reduction is performed before three thermal treatments are carried out; the solution of performing three thermal treatments and a subsequent process improves the uniformity of distribution of elemental nitrogen and makes up for the deficiency of an oxide film, thereby increasing the pressure resistance of the product, and especially its high-frequency attributes.
    Type: Application
    Filed: July 13, 2016
    Publication date: October 10, 2019
    Inventors: Xueqing CHEN, Yuewei CHENG, Yuezhong MA, Zhongxiang LI, Zhidao WANG, Xia LI, Dejun SHI, Zhonghuan ZHAO
  • Patent number: 9764388
    Abstract: A method for preparing a tantalum power of capacitor grade, comprising: solid tantalum nitride is added when potassium fluotantalate is reduced by sodium. The method increases the nitrogen content in the tantalum powder, and at the same time improves the electrical performance of the tantalum powder. The specific capacitance is increased, and the leakage current and loss is improved. The qualification rate of the anode and the capacitor product is also improved. The method is characterized in that the nitrogen in the tantalum nitride diffuses between the particles of the tantalum powder, with substantially no loss, and thus the nitrogen content is accurate and controllable.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: September 19, 2017
    Assignees: NINGXIA ORIENT TANTALUM INDUSTRY CO., LTD., NATIONAL ENGINEERING RESEARCH CENTER FOR SPECIAL METAL MATERIALS OF TANTALUM AND NIOBIUM
    Inventors: Guoqi Yang, Aiguo Zheng, Yuewei Cheng, Yuezhong Ma
  • Publication number: 20170232509
    Abstract: The present invention relates to a composite tantalum powder and a process for preparing the same, and to a capacitor anode prepared from the tantalum powder. The method for preparing a composite tantalum powder comprises the following steps of: 1) providing a tantalum powder prepared by a reduction process, and flattening the tantalum powder so as to prepare a flaked tantalum powder; 2) providing a granular tantalum powder prepared from tantalum ingot; 3) mixing the flaked tantalum powder and the granular tantalum powder to give a tantalum powder mixture; and 4) thermally treating the tantalum powder mixture, and then pulverizing, screening to give a composite tantalum powder. The present invention further relates to a composite tantalum powder prepared from the process and the use thereof in a capacitor.
    Type: Application
    Filed: August 20, 2014
    Publication date: August 17, 2017
    Inventors: GUOQI YANG, Aiguo ZHENG, Yuezhong MA
  • Publication number: 20160059319
    Abstract: A method for preparing a tantalum power of capacitor grade, comprising: solid tantalum nitride is added when potassium fluotantalate is reduced by sodium. The method increases the nitrogen content in the tantalum powder, and at the same time improves the electrical performance of the tantalum powder. The specific capacitance is increased, and the leakage current and loss is improved. The qualification rate of the anode and the capacitor product is also improved. The method is characterized in that the nitrogen in the tantalum nitride diffuses between the particles of the tantalum powder, with substantially no loss, and thus the nitrogen content is accurate and controllable.
    Type: Application
    Filed: December 10, 2013
    Publication date: March 3, 2016
    Inventors: Guoqi YANG, Aiguo ZHENG, Yuewei CHENG, Yuezhong MA
  • Publication number: 20140076462
    Abstract: A method for passivating tantalum metal surface is provided, the method comprises cooling tantalum metal to or below 32° C. and/or passivating tantalum metal surface by oxygen-containing gas with a temperature of 0° C. or below. Also provided is an apparatus for passivating tantalum metal surface for applying the method, comprising a heat treatment furnace, an argon forced-cooling device and/or a device for cooling oxygen-containing gas.
    Type: Application
    Filed: March 23, 2011
    Publication date: March 20, 2014
    Applicant: NINGXIA ORIENT TANTALUM INDUSTRY CO., LTD.
    Inventors: Aiguo Zheng, Yuezhong Ma, Shiping Zheng, Xuecheng Dong, Hongbo Qin, Zhijun Yang, Shiwu Hua, Hui Li, Xudong Xi, Qingsheng Zhang, Shengfang Yang, Yong Jin
  • Patent number: 8238078
    Abstract: The present invention relates to valve metal particles uniformly containing nitrogen and a method for preparing the same, and a valve metal green pellet and a sintered pellet made from the particles, and an electrolytic capacitor anode. The present invention provides valve metal particles uniformly containing nitrogen, wherein the difference ratio of nitrogen contents of particles is 20% or less. The present invention provides a process for preparing said valve metal particles uniformly containing nitrogen, wherein the raw material particles of the valve metal were heated in a nitrogen-containing gas at a temperature of 200° C. or less for 2 hours or more. The present invention also provides a valve metal green pellet made from said valve metal particles. The present invention also provides a valve metal sintered pellet.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: August 7, 2012
    Assignee: Ningxia Orient Tantalum Industry Co., Ltd.
    Inventors: Bin Li, Luntao Pan, Aiguo Zheng, Yuezhong Ma, Yuewei Cheng, Xuecheng Dong, Xueqing Zhang, Zhidao Wang, Baojun Zhu
  • Patent number: 7666247
    Abstract: A method for spherically granulating and agglomerating metal particles such as tantalum and/or niobium powders is described in the present invention, which includes the steps of: a). comminuting the metal particles to form fine particles having D50 less than 50 ?m; b). granulating the comminuted metal particles comprising volatile liquid, for example, tantalum and/or niobium particles comprising volatile liquid, to form wet spherical particles; c). still drying the wet spherical particles and removing volatile liquid to form flowable pre-agglomerated particles with increased bulk density; d). heat treating the pre-agglomerated particles; e). screening the heat treated powder to obtain the flowable agglomerated particles. The present invention provides a flowable spherical agglomerated metal particles, and especially tantalum and/or niobium particles having improved properties. The present agglomerated tantalum powder have a flow rate of at least about 2.0 g/sec, a BET surface area of from about 0.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: February 23, 2010
    Assignee: Ningxia Orient Tantalum Industry Co., Ltd.
    Inventors: Jilin He, Luntao Pan, Aiguo Zheng, Yuewei Cheng, Yuezhong Ma, Hongdong Liu, Guoqi Yang, Chunxiang Wang, Yanping Wang, Shiping Zheng
  • Publication number: 20090180240
    Abstract: The present invention relates to valve metal particles uniformly containing nitrogen and a method for preparing the same, and a valve metal green pellet and a sintered pellet made from the particles, and an electrolytic capacitor anode. The present invention provides valve metal particles uniformly containing nitrogen, wherein the difference ratio of nitrogen contents of particles is 20% or less. The present invention provides a process for preparing said valve metal particles uniformly containing nitrogen, wherein the raw material particles of the valve metal were heated in a nitrogen-containing gas at a temperature of 200° C. or less for 2 hours or more. The present invention also provides a valve metal green pellet made from said valve metal particles. The present invention also provides a valve metal sintered pellet.
    Type: Application
    Filed: October 14, 2008
    Publication date: July 16, 2009
    Inventors: Bin LI, Luntao PAN, Aiguo ZHENG, Yuezhong MA, Yuewei CHENG, Xuecheng DONG, Xueqing ZHANG, Zhidao WANG, Baojun ZHU
  • Publication number: 20070193409
    Abstract: A method for spherically granulating and agglomerating metal particles such as tantalum and/or niobium powders is described in the present invention, which includes the steps of: a). comminuting the metal particles to form fine particles having D50 less than 50 ?m; b). granulating the comminuted metal particles comprising volatile liquid, for example, tantalum and/or niobium particles comprising volatile liquid, to form wet spherical particles; c). still drying the wet spherical particles and removing volatile liquid to form flowable pre-agglomerated particles with increased bulk density; d). heat treating the pre-agglomerated particles; e). screening the heat treated powder to obtain the flowable agglomerated particles. The present invention provides a flowable spherical agglomerated metal particles, and especially tantalum and/or niobium particles having improved properties. The present agglomerated tantalum powder have a flow rate of at least about 2.0 g/sec, a BET surface area of from about 0.
    Type: Application
    Filed: February 17, 2006
    Publication date: August 23, 2007
    Applicant: Ningxia Orient Tantalum Industry Co., Ltd.
    Inventors: Jilin He, Luntao Pan, Aiguo Zheng, Yuewei Cheng, Yuezhong Ma, Hongdong Liu, Guoqi Yang, Chunxiang Wang, Yanping Wang, Shiping Zheng
  • Publication number: 20070068341
    Abstract: A method for spherically granulating and agglomerating metal particles such as tantalum and/or niobium powders is described in the present invention, which includes the steps of: a). comminuting the metal particles to form fine particles having D50 less than 50 ?m; b). granulating the comminuted metal particles comprising volatile liquid, for example, tantalum and/or niobium particles comprising volatile liquid, to form wet spherical particles; c). still drying the wet spherical particles and removing volatile liquid to form flowable pre-agglomerated particles with increased bulk density; d). heat treating the pre-agglomerated particles; e). screening the heat treated powder to obtain the flowable agglomerated particles. The present invention provides a flowable spherical agglomerated metal particles, and especially tantalum and/or niobium particles having improved properties. The present agglomerated tantalum powder have a flow rate of at least about 2.0 g/sec, a BET surface area of from about 0.
    Type: Application
    Filed: February 17, 2006
    Publication date: March 29, 2007
    Applicant: Ningxia Orient Tantalum Industry Co., Ltd.
    Inventors: Yuewei Cheng, Yuezhong Ma, Hongdong Liu, Guoqi Yang, Chunxiang Wang, Yanping Wang, Shiping Zheng