Patents by Inventor Yuganeshan A J
Yuganeshan A J has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11862157Abstract: In some examples, a software agent executing on a server receives a communication comprising a first utterance from a customer and predicts, using an intent classifier, a first intent of the first utterance. Based on determining that the first intent is order-related, the software agent predicts, using a dish classifier, a cart delta vector based at least in part on the first utterance and modifies a cart associated with the customer based on the cart delta vector. The software agent predicts, using a dialog model, a first dialog response based at least in part on the first utterance and provides the first dialog response to the customer using a text-to-speech converter.Type: GrantFiled: July 2, 2021Date of Patent: January 2, 2024Assignee: ConverseNow AIInventors: Rahul Aggarwal, Vinay Kumar Shukla, Pranav Nirmal Mehra, Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J, German Kurt Grin, Fernando Ezequiel Gonzalez, Julia Milanese, Zubair Talib, Matias Grinberg
-
Patent number: 11810550Abstract: A computer system may connect to various customer-facing devices and manage or automate the order process between a retail store and the customer. The computer system may perform the dialogue and receive an order for items from the retail store and may perform quality control monitoring of the dialogue between customers and employees taking orders. The ordering system may utilize the ordered items in combination with various contextual cues to determine a customer identity which may then be linked to past orders and/or various order preferences. Based on the determined customer identity, the system may provide recommendations of additional order items or order alterations to the customer before personally identifying information has been collected from the customer. The determination of the customer identity and the determination of recommendations may be performed by machine learning algorithms that were trained on customer data and the retail store products.Type: GrantFiled: February 24, 2021Date of Patent: November 7, 2023Inventors: Vinay Kumar Shukla, Rahul Aggarwal, Pranav Nirmal Mehra, Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J
-
Patent number: 11704753Abstract: In some aspects, a computing device receives a scan of a code displayed on an order post located near a restaurant, determines that the code is associated with the restaurant, and automatically opens a software application and navigates the software application to an ordering page associated with the restaurant. The computing device initiates receiving, via the software application, input associated with an order, sends the input to a machine learning based software agent executing on a server, receives a predicted response to the input, provides the predicted response as audio output and/or displays the predicted response on the touchscreen display device. After the order is complete, the computing device sends order data associated with the order to the restaurant. After receiving an indication from the restaurant that the order is ready, the computing device indicates that the order is ready to be picked up.Type: GrantFiled: June 3, 2022Date of Patent: July 18, 2023Assignee: ConverseNowAIInventors: Jon Dorch, Pranav Nirmal Mehra, Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J, Ruchi Bafna, T M Vinayak, Vinay Kumar Shukla, Rahul Aggarwal
-
Patent number: 11514894Abstract: In some examples, a server may receive an utterance from a customer. The utterance may be included in a conversation between the artificial intelligence engine and the customer. The server may convert the utterance to text and determine a customer intent based on the text and a user history. The server may determine a user model of the customer based on the text and the customer intent. The server may update a conversation state associated with the conversation based on the customer intent and the user model. The server may determine a user state based on the user model and the conversation state. The server may select, using a reinforcement learning based module, a particular action from a set of actions, the particular action including a response and provide the response to the customer.Type: GrantFiled: November 18, 2021Date of Patent: November 29, 2022Assignee: ConverseNowAIInventors: Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J, Pranav Nirmal Mehra, Rahul Aggarwal, Vinay Kumar Shukla, Zubair Talib
-
Publication number: 20220301082Abstract: In some aspects, a computing device receives a scan of a code displayed on an order post located near a restaurant, determines that the code is associated with the restaurant, and automatically opens a software application and navigates the software application to an ordering page associated with the restaurant. The computing device initiates receiving, via the software application, input associated with an order, sends the input to a machine learning based software agent executing on a server, receives a predicted response to the input, provides the predicted response as audio output and/or displays the predicted response on the touchscreen display device. After the order is complete, the computing device sends order data associated with the order to the restaurant. After receiving an indication from the restaurant that the order is ready, the computing device indicates that the order is ready to be picked up.Type: ApplicationFiled: June 3, 2022Publication date: September 22, 2022Inventors: Jon Dorch, Pranav Nirmal Mehra, Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J, Ruchi Bafna, TM Vinayak, Vinay Kumar Shukla, Rahul Aggarwal
-
Publication number: 20220270600Abstract: In some examples, a software agent executing on a server receives a communication comprising a first utterance from a customer and predicts, using an intent classifier, a first intent of the first utterance. Based on determining that the first intent is order-related, the software agent predicts, using a dish classifier, a cart delta vector based at least in part on the first utterance and modifies a cart associated with the customer based on the cart delta vector. The software agent predicts, using a dialog model, a first dialog response based at least in part on the first utterance and provides the first dialog response to the customer using a text-to-speech converter.Type: ApplicationFiled: July 2, 2021Publication date: August 25, 2022Inventors: Rahul Aggarwal, Vinay Kumar Shukla, Pranav Nirmal Mehra, Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J, German Kurt Grin, Fernando Ezequiel Gonzalez, Julia Milanese, Zubair Talib, Matias Grinberg
-
Publication number: 20220270594Abstract: In some examples, a server may receive an utterance from a customer. The utterance may be included in a conversation between the artificial intelligence engine and the customer. The server may convert the utterance to text and determine a customer intent based on the text and a user history. The server may determine a user model of the customer based on the text and the customer intent. The server may update a conversation state associated with the conversation based on the customer intent and the user model. The server may determine a user state based on the user model and the conversation state. The server may select, using a reinforcement learning based module, a particular action from a set of actions, the particular action including a response and provide the response to the customer.Type: ApplicationFiled: November 18, 2021Publication date: August 25, 2022Inventors: Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J, Pranav Nirmal Mehra, Rahul Aggarwal, Vinay Kumar Shukla, Zubair Talib
-
Publication number: 20220270164Abstract: In some examples, a server may receive, by a menu manager executing on the server, a menu having a particular format from a point-of-sale (POS) terminal and parse the menu to create a parsed menu. The menu is parsed using POS data indicating a formatting of the menu. The server automatically converts the parsed menu into multiple menu items, stores the multiple menu items in a menu item database, and creates a mapping database that includes pricing data, pronunciation data, and voice tags associated with individual menu items of the multiple menu items. The server provides multiple software agents access to the mapping database and instructs individual software agents of the one or more software agents to initiate a conversation with a customer to receive a voice-based order. The individual software agents comprise an instance of an artificial intelligence engine.Type: ApplicationFiled: March 7, 2022Publication date: August 25, 2022Inventors: Pranav Nirmal Mehra, Akshay Labh Kayastha, Ruchi Bafna, Niyathi Allu, Sonali Dipsikha, Anthony Lowe, Vinayak T M, German Kurt Grin, Wayne Moffet, Yuganeshan A J, Vrajesh Navinchandra Sejpal, Rahul Aggarwal
-
Publication number: 20220270591Abstract: A computer system may connect to various customer-facing devices and manage or automate the order process between a retail store and the customer. The computer system may perform the dialogue and receive an order for items from the retail store and may perform quality control monitoring of the dialogue between customers and employees taking orders. The ordering system may utilize the ordered items in combination with various contextual cues to determine a customer identity which may then be linked to past orders and/or various order preferences. Based on the determined customer identity, the system may provide recommendations of additional order items or order alterations to the customer before personally identifying information has been collected from the customer. The determination of the customer identity and the determination of recommendations may be performed by machine learning algorithms that were trained on customer data and the retail store products.Type: ApplicationFiled: February 24, 2021Publication date: August 25, 2022Inventors: Vinay Kumar SHUKLA, Rahul Aggarwal, Pranav Nirmal Mehra, Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J
-
Patent number: 11355120Abstract: In some examples, a software agent executing on a server receives a communication comprising a first utterance from a customer and predicts, using an intent classifier, a first intent of the first utterance. Based on determining that the first intent is order-related, the software agent predicts, using a dish classifier, a cart delta vector based at least in part on the first utterance and modifies a cart associated with the customer based on the cart delta vector. The software agent predicts, using a dialog model, a first dialog response based at least in part on the first utterance and provides the first dialog response to the customer using a text-to-speech converter.Type: GrantFiled: October 1, 2021Date of Patent: June 7, 2022Assignee: ConverseNowAIInventors: Zubair Talib, Rahul Aggarwal, Vinay Kumar Shukla, Pranav Nirmal Mehra, Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J, German Kurt Grin, Fernando Ezequiel Gonzalez, Julia Milanese, Matias Grinberg
-
Patent number: 11354760Abstract: In some aspects, an order post detects, using one or more sensors, a presence of a customer, determines an identity of the customer, retrieves previous orders of the customer, indicates at least one item in the previous orders, receives an order comprising input that includes an utterance of the customer, modifies the utterance to create a modified utterance, sends the modified utterance to a software agent comprising a natural language processor and one or more classifiers, receives a predicted response to the modified utterance from the software agent, plays back the predicted response via the speaker, determines that the order is complete, receives payment information for the order from the customer, sends order data associated with the order to a restaurant, receives an indication from the restaurant that the order is ready for pickup, and instructs the customer to pick up the order.Type: GrantFiled: October 1, 2021Date of Patent: June 7, 2022Assignee: ConverseNowAIInventors: Jon Dorch, Pranav Nirmal Mehra, Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J, Ruchi Bafna, T M Vinayak, Vinay Kumar Shukla, Rahul Aggarwal
-
Patent number: 11348160Abstract: A computer system may connect to various customer-facing devices and manage or automate the order process between a retail store and the customer. The computer system may perform the dialogue and receive an order for items from the retail store and may perform quality control monitoring of the dialogue between customers and employees taking orders. The ordering system may utilize the ordered items in combination with various contextual cues to determine a customer identity which may then be linked to past orders and/or various order preferences. Based on the determined customer identity, the system may provide recommendations of additional order items or order alterations to the customer before personally identifying information has been collected from the customer. The determination of the customer identity and the determination of recommendations may be performed by machine learning algorithms that were trained on customer data and the retail store products.Type: GrantFiled: October 1, 2021Date of Patent: May 31, 2022Assignee: ConverseNowAIInventors: Vinay Kumar Shukla, Rahul Aggarwal, Pranav Nirmal Mehra, Vrajesh Navinchandra Sejpal, Akshay Labh Kayastha, Yuganeshan A J