Patents by Inventor Yugang LU
Yugang LU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240429340Abstract: The present application relates a solar cell, a photovoltaic device and a photovoltaic system. The solar cell includes a substrate, a first passivation layer, and a second passivation layer. The substrate includes a first surface and a second surface opposite to each other along a thickness direction of the substrate. The first passivation layer is disposed on the first surface of the substrate. The second passivation layer is disposed on a side of the first passivation layer away from the substrate. A material of the first passivation layer is the same as that of the second passivation layer. An atomic packing density of the first passivation layer is higher than that of the second passivation layer. An average thickness of the first passivation layer is smaller than that of the second passivation layer.Type: ApplicationFiled: October 24, 2023Publication date: December 26, 2024Applicant: TRINA SOLAR CO., LTD.Inventors: Chengfa LIU, Shuai ZHANG, Hong CHEN, Yugang LU, Wanli LI, Yang ZOU
-
Publication number: 20240413255Abstract: A solar cell and a manufacturing method thereof, and a photovoltaic system. The solar cell includes: a substrate layer including a first surface and a second surface arranged oppositely along a thickness direction thereof; a tunnel oxide layer, a first doped polysilicon layer, and a first passivation layer sequentially arranged on the first surface of the substrate layer in a direction gradually away from the substrate layer; and a first finger electrode layer, at least one of the first fingers being arranged in first connection holes, bottoms of the first connection holes being located in the first doped polysilicon layer, and the first fingers passing through the first connection holes corresponding thereto to be electrically connected to the first doped polysilicon layer; and in the first direction, widths of the first connection holes being all less than widths of the first fingers corresponding to the first connection holes.Type: ApplicationFiled: June 28, 2024Publication date: December 12, 2024Inventors: Chengfa Liu, Yang Zou, Kunzhou Wang, Wanli Li, Yaqian Zhang, Xiaopeng Wu, Shuai Zhang, Yugang Lu, Hong Chen
-
Publication number: 20240347655Abstract: A method for preparing a solar cell is provided. The method includes providing a N-type silicon substrate; depositing a tunnel passivation structure on the first surface of the N-type silicon substrate, and then depositing a mask layer on the tunnel passivation structure; cleaning the second surface of the N-type silicon substrate; performing boron diffusion treatment on the cleaned second surface of the N-type silicon substrate and annealing treatment on the tunnel passivation structure in the same environment, so that a first emitter layer is formed on the second surface of the N-type silicon substrate and the tunnel passivation structure is crystallized; performing laser patterning treatment on the first emitter layer to form a second emitter region; depositing a passivation and anti-reflection film; and forming a first electrode and a second electrode.Type: ApplicationFiled: June 26, 2024Publication date: October 17, 2024Applicants: TRINA SOLAR CO., LTD., TRINA SOLAR (SUQIAN) PHOTOELECTRIC CO., LTD.Inventors: Chengfa LIU, Xiaopeng WU, Yaqian ZHANG, Yang ZOU, Yugang LU, Shuai ZHANG, Hong CHEN, Daming CHEN, Yifeng CHEN
-
Publication number: 20240347667Abstract: The present application provides a film preparation method, a solar cell, a photovoltaic device, and a photovoltaic system. The film preparation method includes forming a first passivation layer on a first surface of a substrate by using a first preparation technique; and forming a second passivation layer on a surface of the first passivation layer away from the substrate by using a second preparation technique, a material of the second passivation layer is the same as that of the first passivation layer; wherein a passivation layer forming speed of the first preparation technique is lower than that of the second preparation technique, and a passivation effect of the first passivation layer is better than that of the second passivation layer.Type: ApplicationFiled: September 19, 2023Publication date: October 17, 2024Applicant: TRINA SOLAR CO., LTD.Inventors: Chengfa LIU, Shuai ZHANG, Hong CHEN, Yugang LU, Wanli LI, Yang ZOU
-
Patent number: 12062728Abstract: A solar cell is provided. The solar cell includes: an N-type silicon substrate having a first surface and a second surface, a tunnel passivation structure and a first passivation and anti-reflection film formed on the first surface, a boron-doped emitter structure layer including a first emitter layer and a second emitter region formed on the second surface, a second passivation and anti-reflection film formed on the emitter structure layer, a first electrode configured to be in electrical contact with the second emitter region, and a second electrode configured to be in electrical contact with the tunnel passivation structure. The solar cell of the present application has a selective emitter structure. The metal contact region has a large junction depth to meet the metallization requirements. The region outside the metal contact region has a small junction depth to improve the optical response.Type: GrantFiled: November 7, 2023Date of Patent: August 13, 2024Assignees: TRINA SOLAR CO., LTD., TRINA SOLAR (SUQIAN) PHOTOELECTRIC CO., LTD.Inventors: Chengfa Liu, Xiaopeng Wu, Yaqian Zhang, Yang Zou, Yugang Lu, Shuai Zhang, Hong Chen, Daming Chen, Yifeng Chen
-
Publication number: 20240266451Abstract: A solar cell is provided. The solar cell includes: an N-type silicon substrate having a first surface and a second surface, a tunnel passivation structure and a first passivation and anti-reflection film formed on the first surface, a boron-doped emitter structure layer including a first emitter layer and a second emitter region formed on the second surface, a second passivation and anti-reflection film formed on the emitter structure layer, a first electrode configured to be in electrical contact with the second emitter region, and a second electrode configured to be in electrical contact with the tunnel passivation structure. The solar cell of the present application has a selective emitter structure. The metal contact region has a large junction depth to meet the metallization requirements. The region outside the metal contact region has a small junction depth to improve the optical response.Type: ApplicationFiled: November 7, 2023Publication date: August 8, 2024Applicants: TRINA SOLAR CO., LTD., TRINA SOLAR (SUQIAN) PHOTOELECTRIC CO., LTD.Inventors: Chengfa LIU, Xiaopeng WU, Yaqian ZHANG, Yang ZOU, Yugang LU, Shuai ZHANG, Hong CHEN, Daming CHEN, Yifeng CHEN
-
Publication number: 20240055539Abstract: The present application relates to a passivating contact structure and a preparation method thereof, and a solar cell and a preparation method thereof. In the method for preparing the passivating contact structure, a tunnel layer is formed on a side of a substrate; an initial stack structure is formed on a side of the tunnel layer away from the substrate. The initial stack structure includes polysilicon layers and a doped layer alternately stacked. In the initial stack structure, an innermost layer is most adjacent to the tunnel layer, an outermost layer is most away from the tunnel layer, the innermost layer and the outermost layer are both polysilicon layers. The doped layer is a polysilicon material layer doped with a dopant. The dopant is activated, such that the dopant diffuses into the polysilicon layers, thereby transforming the initial stack structure into a doped stack structure with uniform distribution of dopant.Type: ApplicationFiled: October 24, 2023Publication date: February 15, 2024Applicant: TRINA SOLAR CO., LTDInventors: Chengfa LIU, Hong CHEN, Yaqian ZHANG, Xiaopeng WU, Yugang LU, Shuai ZHANG