Patents by Inventor Yugo Higashi

Yugo Higashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10105683
    Abstract: A porous member includes a base member and carbon nanostructures. The base member includes a porous body having a porosity of more than or equal to 80%. The carbon nanostructures are formed on a surface of the base member, and have a width of less than or equal to 100 nm. A catalyst member includes a catalyst arranged on surfaces of the carbon nano structures.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: October 23, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Soichiro Okubo, Takeshi Hikata, Risa Utsunomiya, Teruaki Matsuba, Hitoshi Matsumoto, Yugo Higashi
  • Patent number: 9493354
    Abstract: A method for manufacturing a carbon nanostructure according to the present invention includes a preparation step of preparing a base body, an oxidization step and a step of growing a carbon nanostructure. In the step of preparing a base body, a base body with at least a part of a contact portion or an integral portion of a catalyst member and a separation member having been oxidized is prepared. In the step of growing a carbon nanostructure, a carbon nanostructure is grown in a separation interface region between the catalyst member and the separation member. The step of growing a carbon nanostructure includes at least one of a step of locally supplying a source gas to a portion of the catalyst member facing the separation interface region where the carbon nanostructure is being grown, and a step of locally heating the separation interface region.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: November 15, 2016
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Hikata, Soichiro Okubo, Risa Utsunomiya, Yugo Higashi, Jun-ichi Fujita, Katsuhisa Murakami
  • Publication number: 20160002041
    Abstract: A method for manufacturing a carbon nanostructure according to the present invention includes a preparation step of preparing a base body, an oxidization step and a step of growing a carbon nanostructure. In the step of preparing a base body, a base body with at least a part of a contact portion or an integral portion of a catalyst member and a separation member having been oxidized is prepared. In the step of growing a carbon nanostructure, a carbon nanostructure is grown in a separation interface region between the catalyst member and the separation member. The step of growing a carbon nanostructure includes at least one of a step of locally supplying a source gas to a portion of the catalyst member facing the separation interface region where the carbon nanostructure is being grown, and a step of locally heating the separation interface region.
    Type: Application
    Filed: January 28, 2014
    Publication date: January 7, 2016
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takeshi HIKATA, Soichiro OKUBO, Risa UTSUNOMIYA, Yugo HIGASHI, Jun-ichi FUJITA, Katsuhisa MURAKAMI
  • Publication number: 20150375210
    Abstract: A porous member includes a base member and carbon nanostructures. The base member includes a porous body having a porosity of more than or equal to 80%. The carbon nanostructures are formed on a surface of the base member, and have a width of less than or equal to 100 nm. A catalyst member includes a catalyst arranged on surfaces of the carbon nano structures.
    Type: Application
    Filed: February 20, 2014
    Publication date: December 31, 2015
    Inventors: Soichiro OKUBO, Takeshi HIKATA, Risa UTSUNOMIYA, Teruaki MATSUBA, Hitoshi MATSUMOTO, Yugo HIGASHI
  • Patent number: 9096434
    Abstract: There is provided a method for manufacturing a carbon nanostructure with reduced occurrence of a bend and the like. The method for manufacturing a carbon nanostructure according to the present invention includes the steps of: preparing a base body formed of a catalyst member including a catalyst and a separation member that are in contact with or integral with each other (preparation step); oxidizing at least a part of a contact portion or integral portion of the catalyst member and the separation member (oxidation step); bringing a carbon-containing source gas into contact with the catalyst member and/or the separation member (CNT growth step); and growing a carbon nanostructure (CNT growth step). In the CNT growth step, the carbon nanostructure is grown in a separation interface region between the catalyst member and the separation member, by heating the base body while separating the separation member from the catalyst member.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: August 4, 2015
    Assignees: Sumitomo Electric Industries, Ltd., Nissin Electric Co., Ltd.
    Inventors: Takeshi Hikata, Soichiro Okubo, Risa Utsunomiya, Yugo Higashi
  • Publication number: 20130302552
    Abstract: There is provided a method for manufacturing a carbon nanostructure with reduced occurrence of a bend and the like. The method for manufacturing a carbon nanostructure according to the present invention includes the steps of: preparing a base body formed of a catalyst member including a catalyst and a separation member that are in contact with or integral with each other (preparation step); oxidizing at least a part of a contact portion or integral portion of the catalyst member and the separation member (oxidation step); bringing a carbon-containing source gas into contact with the catalyst member and/or the separation member (CNT growth step); and growing a carbon nanostructure (CNT growth step). In the CNT growth step, the carbon nanostructure is grown in a separation interface region between the catalyst member and the separation member, by heating the base body while separating the separation member from the catalyst member.
    Type: Application
    Filed: May 2, 2013
    Publication date: November 14, 2013
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., NISSIN ELECTRIC CO., LTD.
    Inventors: Sumitomo Electric Industries, Ltd., Risa Utsunomiya, Yugo Higashi
  • Patent number: 7651668
    Abstract: A material gas and a catalyst are introduced through a material supplying tube path and a catalyst supplying tube path together with a carrier gas into a reactor equipped on its outer periphery with a heat applicator for thermally decomposing the material gas. The reactor has a convention regulator fitted to the discharge end of the catalyst supplying tube path. The convection regulator covers an edge side of the reactor to regulate gas flow in the reactor so that the flow does not reach the edge side. Due to this, a convection state can be efficiently produced in a reaction region. Consequently, it becomes possible to prevent contamination defect caused by accumulation/adherence of concretion of catalyst, which was generated by aggregation of cooled catalyst in the low-temperature region of the reactor and a decomposition product of the material gas. Thus the efficiency of carbon nanostructure production can be improved.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: January 26, 2010
    Assignees: Japan Science and Technology Agency, Public University Corporation Osaka Prefecture University, Taiyo Nippon Sanso Corporation, Otsuka Chemical Co., Ltd., Nissin Electric Co., Ltd.
    Inventors: Yoshikazu Nakayama, Hiroyuki Tsuchiya, Yugo Higashi, Toshiki Goto, Keisuke Shiono, Takeshi Nagasaka, Nobuharu Okazaki
  • Publication number: 20090047206
    Abstract: Catalyst particles for production of carbon nanocoil, even when a technique of gas-phase catalystic chemical vapor deposition method is employed, realizes high growth yield of carbon nanocoil, ensuring speedy growth of carbon nanocoil and simple production thereof: a process for producing the same; and a process for producing a carbon nanocoil. As catalyst particles for producing a carbon nanocoil of 1000 nm or less in outer coil diameter, catalyst particles having a center portion that is a primary or secondary particle of SnO2, and a primary or secondary particle of a transition metal or an oxide thereof attached around the center portion are provided.
    Type: Application
    Filed: March 20, 2007
    Publication date: February 19, 2009
    Inventors: Nobuharu Okazaki, Yugo Higashi, Yoshikazu Nakayama
  • Publication number: 20080213138
    Abstract: A material gas and a catalyst are introduced through a material supplying tube path and a catalyst supplying tube path together with a carrier gas into a reactor equipped on its outer periphery with a heat applicator for thermally decomposing the material gas. The reactor has a convention regulator fitted to the discharge end of the catalyst supplying tube path. The convection regulator covers an edge side of the reactor to regulate gas flow in the reactor so that the flow does not reach the edge side. Due to this, a convection state can be efficiently produced in a reaction region. Consequently, it becomes possible to prevent contamination defect caused by accumulation/adherence of concretion of catalyst, which was generated by aggregation of cooled catalyst in the low-temperature region of the reactor and a decomposition product of the material gas. Thus the efficiency of carbon nanostructure production can be improved.
    Type: Application
    Filed: September 21, 2005
    Publication date: September 4, 2008
    Inventors: Yoshikazu Nakayama, Hiroyuki Tsuchiya, Yugo Higashi, Toshiki Goto, Keisuke Shiono, Takeshi Nagasaka, Nobuharu Okazaki