Patents by Inventor Yuhan Ling

Yuhan Ling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11491460
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: November 8, 2022
    Assignee: CORNELL UNIVERSITY
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling
  • Publication number: 20210053025
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 25, 2021
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling
  • Patent number: 10882023
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: January 5, 2021
    Assignee: Cornell University
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling
  • Publication number: 20190060868
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 28, 2019
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling
  • Patent number: 10086360
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: October 2, 2018
    Assignee: Cornell University
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling
  • Publication number: 20180093252
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Application
    Filed: November 27, 2017
    Publication date: April 5, 2018
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling
  • Patent number: 9855545
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 2, 2018
    Assignee: Cornell University
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling
  • Publication number: 20170173560
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling
  • Patent number: 9624314
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: April 18, 2017
    Assignee: Cornell University
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling
  • Publication number: 20160304630
    Abstract: A nucleophilic substitution reaction to crosslink cyclodextrin (CD) polymer with rigid aromatic groups, providing a high surface area, mesoporous CD-containing polymers (P-CDPs). The P-CDPs can be used for removing organic contaminants from water. By encapsulating pollutants to form well-defined host-guest complexes with complementary selectivities to activated carbon (AC) sorbents. The P-CDPs can rapidly sequester pharmaceuticals, pesticides, and other organic micropollutants, achieving equilibrium binding capacity in seconds with adsorption rate constants 15-200 times greater than ACs and nonporous CD sorbents. The CD polymer can be regenerated several times, through a room temperature washing procedure, with no loss in performance.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 20, 2016
    Inventors: William R. Dichtel, Alaaeddin Alsbaiee, Brian J. Smith, Juan Hinestroza, Diego Alzate-Sanchez, Leilei Xiao, Yuhan Ling, Damian Helbling