Patents by Inventor Yuhao SHI

Yuhao SHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937438
    Abstract: An organic field-effect transistor and a fabrication method therefor, including: providing a gate; depositing polymer material onto the gate to form a dielectric layer; performing supercritical fluids treatment on the gate having the dielectric layer deposited; depositing organic semiconductor layer material on the dielectric layer having been processed, to form an organic semiconductor layer; depositing electrode layer material on the organic semiconductor layer and forming an electrode layer. The dielectric properties of the dielectric layer after adopting the supercritical fluids treatment have been significantly improved. While the hysteresis effect of the dielectric layers in the OFET devices has been basically eliminated, the sub-threshold slope of the OFET is also significantly reduced, the carrier mobility is effectively improved. Additionally, an OFET switching rate after being processed is improved, and, by connecting the LEDs in series, the switching rate of the LED is increased.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: March 19, 2024
    Assignee: PEKING UNIVERSITY SHENZHEN GRADUATE SCHOOL
    Inventors: Hong Meng, Yuhao Shi, Xinwei Wang, Lin Ai
  • Publication number: 20230093494
    Abstract: An organic field-effect transistor and a fabrication method therefor, including: providing a gate; depositing polymer material onto the gate to form a dielectric layer; performing supercritical fluids treatment on the gate having the dielectric layer deposited; depositing organic semiconductor layer material on the dielectric layer having been processed, to form an organic semiconductor layer; depositing electrode layer material on the organic semiconductor layer and forming an electrode layer. The dielectric properties of the dielectric layer after adopting the supercritical fluids treatment have been significantly improved. While the hysteresis effect of the dielectric layers in the OFET devices has been basically eliminated, the sub-threshold slope of the OFET is also significantly reduced, the carrier mobility is effectively improved. Additionally, an OFET switching rate after being processed is improved, and, by connecting the LEDs in series, the switching rate of the LED is increased.
    Type: Application
    Filed: April 17, 2020
    Publication date: March 23, 2023
    Applicant: PEKING UNIVERSITY SHENZHEN GRADUATE SCHOOL
    Inventors: Hong MENG, Yuhao SHI, Xinwei WANG, Lin AI