Patents by Inventor Yuhei Maeda
Yuhei Maeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240226954Abstract: A cup includes a flow passage forming member forming a first exhaust passage, a scattered substance collection passage configured to collect a scattered substance from a substrate, and a second exhaust passage in sequence as going upwards; a joint exhaust passage connected to each of the first exhaust passage, the scattered substance collection passage, and the second exhaust passage; a first annular member included in the flow passage forming member, the scattered substance collection passage and the first exhaust passage being formed above and below the first annular member, respectively; and a communication hole provided in the flow passage forming member to allow the scattered substance collection passage and the joint exhaust passage to communicate with each other such that a pressure loss of the communication hole is large as compared to a pressure loss in a gap formed between the first annular member and the substrate.Type: ApplicationFiled: October 19, 2023Publication date: July 11, 2024Inventors: Ryunosuke Higashi, Kenji Yada, Yoshihiro Imura, Kohei Kawakami, Yuhei Maeda
-
Publication number: 20240131554Abstract: A cup includes a flow passage forming member forming a first exhaust passage, a scattered substance collection passage configured to collect a scattered substance from a substrate, and a second exhaust passage in sequence as going upwards; a joint exhaust passage connected to each of the first exhaust passage, the scattered substance collection passage, and the second exhaust passage; a first annular member included in the flow passage forming member, the scattered substance collection passage and the first exhaust passage being formed above and below the first annular member, respectively; and a communication hole provided in the flow passage forming member to allow the scattered substance collection passage and the joint exhaust passage to communicate with each other such that a pressure loss of the communication hole is large as compared to a pressure loss in a gap formed between the first annular member and the substrate.Type: ApplicationFiled: October 18, 2023Publication date: April 25, 2024Inventors: Ryunosuke Higashi, Kenji Yada, Yoshihiro Imura, Kohei Kawakami, Yuhei Maeda
-
Patent number: 9169578Abstract: A liquid crystalline polyester fiber which exhibits a half width of endothermic peak (Tm1) of 15° C. or above as observed in differential calorimetry under heating from 50° C. at a temperature elevation rate of 20° C./min and a strength of 12.0 cN/dtex or more; and a process for production of the same. A liquid crystalline polyester fiber which is excellent in abrasion resistance and lengthwise uniformity and is improved in weavability and quality of fabric and which is characterized by a small single-fiber fineness can be efficiently produced without impairing the characteristics inherent in fabric made of liquid crystalline polyester fiber produced by solid phase polymerization, namely, high strength, high elastic modulus and excellent thermal resistance.Type: GrantFiled: December 16, 2013Date of Patent: October 27, 2015Assignee: TORAY INDUSTRIES, INC.Inventors: Yoshitsugu Funatsu, Hiroo Katsuta, Yuhei Maeda
-
Patent number: 9011743Abstract: Disclosed are liquid crystal polyester fibers, which have a peak half-width of 15° C. or greater at an endothermic peak (Tm1) observed by differential calorimetry under a temperature elevation of 20° C./minute from 50° C., polystyrene equivalent weight average molecular weight of 250,000 or more and 2,000,000 or less, and a variable waveform of less than 10% in terms of the half inert diagram mass waveform determined by a Uster yarn irregularity tester. Also disclosed is a method for producing liquid crystal polyester fibers, wherein liquid crystal polyester fibers are formed into a package, the fibers are then subjected to solid-phase polymerization, and the solid-phase polymerized liquid crystal polyester fibers are unrolled from the package and successively heat treated without being once taken up. The heat treatment temperature is controlled at a temperature of the endothermic peak temperature (Tm1) of the solid-phase polymerized liquid crystal polyester fibers+60° C.Type: GrantFiled: March 4, 2010Date of Patent: April 21, 2015Assignee: Toray Industries, Inc.Inventors: Yoshitsugu Funatsu, Yuhei Maeda, Norio Suzuki, Hiroo Katsuta
-
Patent number: 8734614Abstract: A polyphenylene sulfide fiber has an amount of heat of crystallization measured by DSC is 10 J/g or more and the degree of shrinkage on dry heating of 150° C.×30 minutes is 20% or less. A method produces a densified wet-laid nonwoven fabric by subjecting paper produced in a papermaking process and containing 60 to 100% by mass of a polyphenylene sulfide fiber having an amount of heat of crystallization of 10 J/g or more and an amount of heat of crystallization of the wet-laid nonwoven fabric before heating-pressurizing treatments is 5 J/g or more to heating-pressurizing treatment at a temperature that is not lower than the glass transition temperature and not higher than the melting point of the polyphenylene sulfide fiber.Type: GrantFiled: July 8, 2009Date of Patent: May 27, 2014Assignee: Toray Industries, Inc.Inventors: Tomoko Takano, Koji Sugano, Yuhei Maeda, Takeshi Sugimoto
-
Publication number: 20140106169Abstract: A liquid crystalline polyester fiber which exhibits a half width of endothermic peak (Tm1) of 15° C. or above as observed in differential calorimetry under heating from 50° C. at a temperature elevation rate of 20° C./min and a strength of 12.0 cN/dtex or more; and a process for production of the same. A liquid crystalline polyester fiber which is excellent in abrasion resistance and lengthwise uniformity and is improved in weavability and quality of fabric and which is characterized by a small single-fiber fineness can be efficiently produced without impairing the characteristics inherent in fabric made of liquid crystalline polyester fiber produced by solid phase polymerization, namely, high strength, high elastic modulus and excellent thermal resistance.Type: ApplicationFiled: December 16, 2013Publication date: April 17, 2014Applicant: TORAY INDUSTRIES, INC.Inventors: Yoshitsugu FUNATSU, Hiroo KATSUTA, Yuhei MAEDA
-
Patent number: 8673174Abstract: A liquid crystalline polyester fiber which exhibits a half width of endothermic peak (Tm1) of 15° C. or above as observed in differential calorimetry under heating from 50° C. at a temperature elevation rate of 20° C./min and a strength of 12.0 cN/dtex or more; and a process for production of the same. A liquid crystalline polyester fiber which is excellent in abrasion resistance and lengthwise uniformity and is improved in weavability and quality of fabric and which is characterized by a small single-fiber fineness can be efficiently produced without impairing the characteristics inherent in fabric made of liquid crystalline polyester fiber produced by solid phase polymerization, namely, high strength, high elastic modulus and excellent thermal resistance.Type: GrantFiled: February 27, 2008Date of Patent: March 18, 2014Assignee: Toray Industries, Inc.Inventors: Yoshitsugu Funatsu, Hiroo Katsuta, Yuhei Maeda
-
Patent number: 8101688Abstract: Polylactic acid fibers excellent in wearing resistance and in the ability to smoothly pass through processing steps. The polylactic acid fibers contain a fatty acid bisamide and/or an alkyl-substituted fatty acid monoamide in an amount of 0.1 to 5 wt. % based on the whole fibers.Type: GrantFiled: January 3, 2011Date of Patent: January 24, 2012Assignee: TORAY Industries., Inc.Inventors: Toshiaki Kimura, Shuichi Nonaka, Takashi Ochi, Takaaki Mihara, Katsuhiko Mochizuki, Yuhei Maeda
-
Publication number: 20110318982Abstract: Disclosed are liquid crystal polyester fibers, which have a peak half-width of 15° C. or greater at an endothermic peak (Tm1) observed by differential calorimetry under a temperature elevation of 20° C./minute from 50° C., polystyrene equivalent weight average molecular weight of 250,000 or more and 2,000,000 or less, and a variable waveform of less than 10% in terms of the half inert diagram mass waveform determined by a Uster yarn irregularity tester. Also disclosed is a method for producing liquid crystal polyester fibers, wherein liquid crystal polyester fibers are formed into a package, the fibers are then subjected to solid-phase polymerization, and the solid-phase polymerized liquid crystal polyester fibers are unrolled from the package and successively heat treated without being once taken up. The heat treatment temperature is controlled at a temperature of the endothermic peak temperature (Tm1) of the solid-phase polymerized liquid crystal polyester fibers+60° C.Type: ApplicationFiled: March 4, 2010Publication date: December 29, 2011Inventors: Yoshitsugu Funatsu, Yuhei Maeda, Norio Suzuki, Hiroo Katsuta
-
Patent number: 8017233Abstract: Fibers having excellent responsiveness to magnetic field and conductivity, made of a polymer having fiber forming functions which contains magnetic material particles in spherical form having a saturation magnetic flux density of no less than 0.5 tesla. The fibers can include: (a) the average particle diameter is no greater than 5 ?m, (b) the coercive force is no greater than 1000 A/m, and (c) the fibers are complex fibers which are made of magnetic layers that contain 20 wt % to 90 wt % of magnetic material particles, and protective layers where the content of the magnetic material particles is less than 20 wt %.Type: GrantFiled: May 18, 2004Date of Patent: September 13, 2011Assignee: Toray Industries, Inc.Inventors: Kouki Miyazono, Yuhei Maeda
-
Patent number: 7988905Abstract: The invention provides a method for manufacturing a molded woody article, which includes compression molding a base material containing wood fibers, polylactic acid fibers and an inorganic filler at a temperature not less than a melting point of the polylactic acid fibers, and maintaining the molded base material at a temperature close to a crystallization temperature of the polylactic acid fibers for a desired period of time, thereby crystallizing the polylactic acid fibers. In the molding step, the base material is entirely deformed and molded into a desired shape while the polylactic acid fibers are melted, and in the crystallizing step, the polylactic acid fibers are solidified, thereby producing the molded article. In the crystallizing step, polylactic acid crystallizes rapidly and reliably utilizing the inorganic filler as a crystal nucleating agent.Type: GrantFiled: March 17, 2005Date of Patent: August 2, 2011Assignees: Toyota Boshoku Kabushiki Kaisha, Toyota Jidosha Kabushiki KaishaInventors: Masanori Hashiba, Hideki Kawashiri, Takashi Inoh, Hisashi Okuyama, Hiroshi Urayama, Katsuhiko Mochizuki, Yuhei Maeda
-
Publication number: 20110165370Abstract: Polylactic acid fibers excellent in wearing resistance and in the ability to smoothly pass through processing steps. The polylactic acid fibers contain a fatty acid bisamide and/or an alkyl-substituted fatty acid monoamide in an amount of 0.1 to 5 wt. % based on the whole fibers.Type: ApplicationFiled: January 3, 2011Publication date: July 7, 2011Inventors: Toshiaki Kimura, Shuichi Nonaka, Takashi Ochi, Takaaki Sakai, Katsuhiko Mochizuki, Yuhei Maeda
-
Publication number: 20110114274Abstract: A polyphenylene sulfide fiber has an amount of heat of crystallization measured by DSC is 10 J/g or more and the degree of shrinkage on dry heating of 150° C.×30 minutes is 20% or less. A method produces a densified wet-laid nonwoven fabric, wherein a wet-laid nonwoven fabric that contains 60 to 100% by mass of a polyphenylene sulfide fiber having an amount of heat of crystallization of 10 J/g or more and wherein the amount of heat of crystallization of the polyphenylene sulfide fiber before heating-pressurizing treatments is 5 J/g or more is subjected to heating-pressurizing treatment at a temperature that is not lower than the glass transition temperature and not higher than the melting point of the polyphenylene sulfide fiber.Type: ApplicationFiled: July 8, 2009Publication date: May 19, 2011Applicant: TORAY INDUSTRIES, INC.Inventors: Tomoko Takano, Koji Sugano, Yuhei Maeda, Takeshi Sugimoto
-
Publication number: 20100104870Abstract: A liquid crystalline polyester fiber which exhibits a half width of endothermic peak (Tm1) of 15° C. or above as observed in differential calorimetry under heating from 50° C. at a temperature elevation rate of 20° C./min and a strength of 12.0 cN/dtex or more; and a process for production of the same. A liquid crystalline polyester fiber which is excellent in abrasion resistance and lengthwise uniformity and is improved in weavability and quality of fabric and which is characterized by a small single-fiber fineness can be efficiently produced without impairing the characteristics inherent in fabric made of liquid crystalline polyester fiber produced by solid phase polymerization, namely, high strength, high elastic modulus and excellent thermal resistance.Type: ApplicationFiled: February 27, 2008Publication date: April 29, 2010Inventors: Yoshitsugu Funatsu, Hiroo Katsuta, Yuhei Maeda
-
Patent number: 7416779Abstract: To provide a fiberboard capable of reducing a load on the environment at all states of producing, using, and abolishing and moreover having a high degree of bending strength and a high bending-strength retention rate at high temperature and high humidity so as to be usable for an automobile interior material or building material and a fiber-board producing method. The fiberboard is formed by mixing natural fiber with polylactic acid resin serving as a binder and has an apparent density of 0.2 g/cm3.Type: GrantFiled: September 17, 2003Date of Patent: August 26, 2008Assignees: Toyota Auto Body Co. Ltd., Toyota Boshoku Co. Ltd., Toray Industries, Inc., Toyota Tsusho Corporation, Toyota Jidosha Kabushiki KaishaInventors: Masanori Hashiba, Takehiro Kato, Kousuke Tamaki, Osamu Mito, Kazuya Matsumura, Tomomichi Fujiyama, Yuhei Maeda, Eiji Sugiyama, Takashi Inoh, Hiroshi Urayama, Hisashi Okuyama
-
Publication number: 20070176315Abstract: A method is provided for manufacturing a molded woody article. The method includes compression molding a base material containing wood fibers, polylactic acid fibers and an inorganic filler at a temperature not less than a melting point of said polylactic acid fibers, and maintaining said molded base material at a temperature close to a crystallization temperature of said polylactic acid fibers for a desired period of time, thereby crystallizing the polylactic acid fibers. In the molding step, the base material is entirely deformed and molded into a desired shape while the polylactic acid fibers are melted, and in the crystallizing step, the polylactic acid fibers are solidified, thereby producing the molded article. In the crystallizing step, polylactic acid crystallizes rapidly and reliably utilizing the inorganic filler as a crystal nucleating agent. Polylactic acid crystallizes from portions contacting the wood fibers.Type: ApplicationFiled: March 17, 2005Publication date: August 2, 2007Inventors: Masanori Hashiba, Hideki Kawashiri, Takashi Inoh, Hisashi Okuyama, Hiroshi Urayama, Katsuhiko Mochizuki, Yuhei Maeda
-
Publication number: 20070003761Abstract: The present invention relates to fibers having excellent responsiveness to magnetic fields and excellent conductivity, as well as articles made of the same. In particular, the present invention relates to fibers having magnetic properties and conductivity, which are excellent in resistance to heat and responsiveness to magnetic fields in a unit where a magnetic field is applied, as well as in stability of conductivity when the humidity varies. In addition, the present invention relates to textiles using such fibers, knitted articles and cloths, such as non-woven cloths, short fibers, brush rollers made of short fibers, and electro-photographic apparatuses using brush rollers. The fibers of the present invention are fibers having excellent responsiveness to magnetic field and conductivity, made of a polymer having fiber forming functions which contains magnetic material particles in spherical form having a saturation magnetic flux density of no less than 0.5 tesla.Type: ApplicationFiled: May 18, 2004Publication date: January 4, 2007Applicant: Toray Industries, Inc.Inventors: Kouki Miyazono, Yuhei Maeda
-
Publication number: 20050203258Abstract: Polylactic acid fibers excellent in wearing resistance and in the ability to smoothly pass through processing steps. The polylactic acid fibers contain a fatty acid bisamide and/or an alkyl-substituted fatty acid monoamide in an amount of 0.1 to 5 wt. % based on the whole fibers.Type: ApplicationFiled: September 1, 2003Publication date: September 15, 2005Applicant: TORAY INDUSTRIIES, INC.Inventors: Toshiaki Kimura, Shuichi Nonaka, Takashi Ochi, Takaaki Sakai, Katsuhiko Mochizuki, Yuhei Maeda
-
Publication number: 20050186422Abstract: A poly(lactic acid) fiber has a strength at 90° C. of equal to or more than 0.8 cN/dtex and exhibits significantly satisfactory mechanical properties at high temperatures as compared with conventional poly(lactic acid) fibers.Type: ApplicationFiled: June 22, 2004Publication date: August 25, 2005Applicant: Toray Industries, Inc. a corporation of JapanInventors: Takashi Ochi, Takaaki Sakai, Yuhei Maeda
-
Patent number: 6803000Abstract: A soft stretch yarn produced by spinning yarn of conjugate fibers including two types of polyester in which one component is PTT at a take-up velocity of at least 1200 m/min, drawing at a drawing temperature of 50 to 80° C. at a draw ratio such that the drawn yarn tensile elongation is 20 to 45%, and then heat setting.Type: GrantFiled: July 12, 2001Date of Patent: October 12, 2004Assignee: Toray Industries, Inc.Inventors: Takashi Ochi, Katsuhiko Mochizuki, Yuhei Maeda