Patents by Inventor Yuichi Ienaga

Yuichi Ienaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220154314
    Abstract: Provided are: a flame-retardant magnesium alloy which is prevented from the occurrence of the molten metal combustion during the melting of the alloy in casting; and a method for producing the flame-retardant magnesium alloy. A magnesium alloy containing a specific element in a specified amount and also containing a specific rare earth element (RE) in a specified amount. The magnesium alloy makes it possible to form an oxide film of the rare earth element (RE) which is dense and thin and is rarely cracked on the outermost surface of a molten metal. More specifically a flame-retardant magnesium alloy which contains, in % by mass, less than 9.0% of Ca, 0.5% or more and less than 5.7% of Al, 1.3% or less of Si, 0.4% or more and less than 1.3% of a rare earth element and a remainder made up by Mg and unavoidable impurities, wherein the requirement represented by the formula: Al+8Ca?20.5% is satisfied.
    Type: Application
    Filed: February 4, 2020
    Publication date: May 19, 2022
    Inventors: Yuichi IENAGA, Yoichi NOSAKA
  • Patent number: 11255004
    Abstract: The present invention provides a stainless steel including 21 to 23% by mass of Cr, 0.2 to 0.4% by mass of Mn, 1.0 to 2.0% by mass of Mo, 0.08 to 2.0% by mass or Al, 0.01 to 0.2% by mass of Ti, and 0.2 to 0.5% by mass of Nb, with the balance being Fe and inevitable impurities; an interconnector of a fuel cell or a base material for holding a cell of a fuel cell made of this stainless steel; and a solid oxide fuel cell including this interconnector or this base material for holding a cell.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: February 22, 2022
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Atsushi Koizumi, Yuichi Ienaga
  • Patent number: 10808301
    Abstract: A magnesium alloy is provided which does not contain a rare earth and which achieves, in a high-temperature region of about 200° C., both satisfactory mechanical properties and thermal conductivity. A magnesium alloy including Mg, Ca, Al and Si, where a content of Ca is less than 9.0 mass %, a content of Al is equal to or more than 0.5 mass % but less than 5.7 mass %, a content of Si is equal to or less than 1.3 mass % and Al+8Ca?20.5%.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: October 20, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Yuichi Ienaga, Masao Ishida
  • Publication number: 20190144980
    Abstract: The present invention provides a stainless steel including 21 to 23% by mass of Cr, 0.2 to 0.4% by mass of Mn, 1.0 to 2.0% by mass of Mo, 0.08 to 2.0% by mass or Al, 0.01 to 0.2% by mass of Ti, and 0.2 to 0.5% by mass of Nb, with the balance being Fe and inevitable impurities; an interconnector of a fuel cell or a base material for holding a cell of a fuel cell made of this stainless steel; and a solid oxide fuel cell including this interconnector or this base material for holding a cell.
    Type: Application
    Filed: December 27, 2016
    Publication date: May 16, 2019
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Atsushi Koizumi, Yuichi Ienaga
  • Patent number: 10202672
    Abstract: A magnesium casting alloy is provided in which unlike an extruded alloy, a large amount of energy and a large cost are not needed for plastic processing, and in which in a high-temperature region of about 200 to 250° C., both mechanical properties and thermal conductivity are achieved. A magnesium casting alloy including Mg, Zn and Y, where a content of Zn is equal to or more than 1.2 atomic % but equal to or less than 4.0 atomic %, a content of Y is equal to or more than 1.2 atomic % but equal to or less than 4.0 atomic %, a composition ratio Zn/Y of Zn to Y is equal to or more than 0.65 but equal to or less than 1.35 and an Mg purity of an Mg mother phase is equal to or more than 97.0%.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: February 12, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Yuichi Ienaga
  • Publication number: 20160348218
    Abstract: A magnesium casting alloy is provided in which unlike an extruded alloy, a large amount of energy and a large cost are not needed for plastic processing, and in which in a high-temperature region of about 200 to 250° C., both mechanical properties and thermal conductivity are achieved. A magnesium casting alloy including Mg, Zn and Y, where a content of Zn is equal to or more than 1.2 atomic % but equal to or less than 4.0 atomic %, a content of Y is equal to or more than 1.2 atomic % but equal to or less than 4.0 atomic %, a composition ratio Zn/Y of Zn to Y is equal to or more than 0.65 but equal to or less than 1.35 and an Mg purity of an Mg mother phase is equal to or more than 97.0%.
    Type: Application
    Filed: May 13, 2016
    Publication date: December 1, 2016
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Yuichi Ienaga
  • Publication number: 20160348217
    Abstract: A magnesium alloy is provided which does not contain a rare earth and which achieves, in a high-temperature region of about 200° C., both satisfactory mechanical properties and thermal conductivity. A magnesium alloy including Mg, Ca, Al and Si, where a content of Ca is less than 9.0 mass %, a content of Al is equal to or snore than 0.5 mass % but less than 5.7 mass %, a content of Si is equal to or less than 1.3 mass % and Al+8Ca?20.5%.
    Type: Application
    Filed: May 3, 2016
    Publication date: December 1, 2016
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Yuichi Ienaga, Masao Ishida
  • Publication number: 20090162242
    Abstract: Provided are a heat-resistant magnesium alloy which has at the same time both high strength and high ductility even under high temperature environment and is also inexpensive, and a production process of the heat-resistant magnesium alloy. The heat-resistant magnesium alloy includes, in relation to the total amount of the alloy, 1 to 3 at % of Zn, 1 to 3 at % of Y and 0.01 to 0.5 at % of Zr with the balance composed of Mg and inevitable impurities, wherein the composition ratio Zn/Y between Zn and Y falls within a range from 0.6 to 1.3, an a-Mg phase and an intermetallic compound Mg3Y2Zn3 phase are finely dispersed, and a long period stacking ordered structure phase is formed in a three-dimensional network shape. The heat-resistant magnesium alloy can be produced by melting a metal material having the above-described composition at temperatures within a range from 650 to 900° C., pouring the molten metal material into a mold and cooling the molten metal material at a rate of 10 to 103 K/sec.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 25, 2009
    Inventors: Kenshi Inoue, Yuichi Ienaga