Patents by Inventor Yuichi Nishikubo

Yuichi Nishikubo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230024782
    Abstract: An ultrasound diagnostic apparatus includes: an image generator that generates ultrasound image data based on a reception signal received from an ultrasound probe that sends and receives ultrasound waves; a fastener that attaches the ultrasound probe to a subject and fastens the ultrasound probe on the subject such that a pressure applied to the subject to which the ultrasound probe is attached is adjustable; and a hardware processor. The hardware processor controls driving of the fastener, based on difference information between before fastening the ultrasound probe and during/after fastening the ultrasound probe, the difference information being on at least one of positional information on a position of an observation target of the subject, angle information on an angle of the observation target, and pressure information on a pressure applied to the subject.
    Type: Application
    Filed: June 3, 2022
    Publication date: January 26, 2023
    Applicant: KONICA MINOLTA, INC.
    Inventors: Kaoru OKADA, Yuichi NISHIKUBO, Hiroaki KIKUCHI
  • Patent number: 10617386
    Abstract: A medical acoustic coupler is to be detachably attached to an ultrasonic probe including a graspable trunk portion and a protruding portion protruding in a width direction from the trunk portion, the medical acoustic coupler including a sheet-like elastic member, the elastic member including: a contact portion located at a central portion of the elastic member in a planar view, the contact portion being brought into contact with an ultrasound transmission/reception surface located at a top edge of the protruding portion when the elastic member is attached to the ultrasonic probe; and loop portions located on the opposite sides of the contact portion from each other, the loop portions each forming a loop, wherein, when the elastic member is attached to the ultrasonic probe, the loop portions are hooked around the protruding portion, to fix the elastic member to the ultrasonic probe.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: April 14, 2020
    Assignee: KONICA MINOLTA, INC.
    Inventors: Yuiko Kitamura, Yuichi Nishikubo
  • Patent number: 9839411
    Abstract: An ultrasound probe includes a piezoelectric section to transmit and receive ultrasound, wherein the piezoelectric section includes a plurality of laminated piezoelectric layers each of which includes piezoelectric members and non-piezoelectric members both of which are arranged alternately in parallel to each other in an arrangement direction, and wherein the arrangement direction of the piezoelectric members and the non-piezoelectric members in at least one piezoelectric layer of the plurality of laminated piezoelectric layers is different from that in other one piezoelectric layer of the plurality of laminated piezoelectric layers.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: December 12, 2017
    Assignee: KONICA MINOLTA MEDICAL & GRAPHIC, INC.
    Inventor: Yuichi Nishikubo
  • Patent number: 9833814
    Abstract: A method for producing a composite piezoelectric body includes: forming a composite piezoelectric body by filling a non-conductive polymer between a plurality of piezoelectric materials arranged in an array state at predetermined intervals, and polishing one surface of the composite piezoelectric body, from which surface at least the piezoelectric materials and the polymer are exposed, by using an abrasive film in which an abrasive particle is applied to a base film.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: December 5, 2017
    Assignee: KONICA MINOLTA, INC.
    Inventor: Yuichi Nishikubo
  • Publication number: 20160338665
    Abstract: A medical acoustic coupler is to be detachably attached to an ultrasonic probe including a graspable trunk portion and a protruding portion protruding in a width direction from the trunk portion, the medical acoustic coupler including a sheet-like elastic member, the elastic member including: a contact portion located at a central portion of the elastic member in a planar view, the contact portion being brought into contact with an ultrasound transmission/reception surface located at a top edge of the protruding portion when the elastic member is attached to the ultrasonic probe; and loop portions located on the opposite sides of the contact portion from each other, the loop portions each forming a loop, wherein, when the elastic member is attached to the ultrasonic probe, the loop portions are hooked around the protruding portion, to fix the elastic member to the ultrasonic probe.
    Type: Application
    Filed: April 21, 2016
    Publication date: November 24, 2016
    Inventors: Yuiko KITAMURA, Yuichi NISHIKUBO
  • Patent number: 9375754
    Abstract: In a laminated piezoelectric body, a laminated piezoelectric body manufacturing method, an ultrasound transducer, and an ultrasound diagnostic device according to the present invention, a plurality of mutually laminated piezoelectric bodies are electrically connected in parallel to each other, and each of the plurality of piezoelectric bodies arranges an orientation of residual polarization or a crystal axis that is related to an electrical displacement or a sign of an electric field due to a direct piezoelectric effect in a direction which reduces sensitivity in a first resonance mode and increases sensitivity in a second resonance mode of a higher order than the first resonance mode with respect to an axis of a first-level piezoelectric body on a fixed end-side.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: June 28, 2016
    Assignee: KONICA MINOLTA MEDICAL & GRAPHIC, INC.
    Inventors: Yuichi Nishikubo, Kenji Ohnuma, Kiyokazu Morita, Kenji Suzuki, Hidekazu Kodama, Munehiro Date
  • Patent number: 8981625
    Abstract: In the present invention, provided is an organic piezoelectric material specifically exhibiting high orientation and thermal stability as an organic piezoelectric material exhibiting an excellent piezoelectric characteristic and having piezoelectricity and pyroelectricity, which is capable of converting thermal or mechanical simulation into electrical energy, and also provided are an ultrasound probe for which the organic piezoelectric material is used, and an ultrasound image detector thereof. It is a feature that an organic piezoelectric material of the present invention possesses a compound represented by Formula (1) and a base material made of an organic polymeric material, satisfying Expression (1): |C Log P (1)?C Log P (base material)|?3.0 when C Log P values of the compound and the base material are expressed as C Log P (1) and C Log P (base material), respectively.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: March 17, 2015
    Assignee: Konica Minolta Medical & Graphics, Inc.
    Inventors: Yuichi Nishikubo, Rie Fujisawa
  • Patent number: 8968591
    Abstract: Disclosed is an organic piezoelectric material which has excellent piezoelectric characteristics and excellent handling properties. Also disclosed are an ultrasound transducer using the organic piezoelectric material, an ultrasound probe, and an ultrasound medical diagnostic imaging system. Specifically disclosed is an organic piezoelectric material which contains a base material that is formed from a resin, and a specific compound (1) that has at least one linking group selected from among specific linking groups. The organic piezoelectric material is characterized in that the relation shown below is satisfied when the CLogP values of the specific compound (1) and the base material are respectively represented by CLogP(1) and CLogP(base material). Relation: |CLogP(1)?CLogP(base material)|?3.0.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: March 3, 2015
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Yuichi Nishikubo, Rie Fujisawa
  • Patent number: 8905934
    Abstract: Object is that an output sound pressure at transmission or an output voltage at reception of a predetermined higher resonance component becomes higher than those of the primary resonance component. The piezoelectric material layer 24 has an electrode on the surface of the piezoelectric material of between the layer and both ends, and outputs and inputs an electrical signal with this electrode. The piezoelectric material 24 has a remanent polarization in a thickness direction, the relationship of the (4P+1)th layer piezoelectric material from fixed end side is used as the basic relationship, piezoelectric materials are periodically arranged so that piezoelectric materials of (4p+2)th and (4p+3)th layer each has an opposite relationship, and (4p+4)th layer has the same relationship as the basic relationship.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: December 9, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventor: Yuichi Nishikubo
  • Publication number: 20140257109
    Abstract: A method for producing a composite piezoelectric body includes: forming a composite piezoelectric body by filling a non-conductive polymer between a plurality of piezoelectric materials arranged in an array state at predetermined intervals, and polishing one surface of the composite piezoelectric body, from which surface at least the piezoelectric materials and the polymer are exposed, by using an abrasive film in which an abrasive particle is applied to a base film.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 11, 2014
    Applicant: KONICA MINOLTA, INC.
    Inventor: Yuichi NISHIKUBO
  • Patent number: 8575823
    Abstract: A laminated piezoelectric material has a four-layered piezoelectric material and electrode layers for applying a voltage to each layer of the four-layered piezoelectric material. Each piezoelectric material has an inorganic piezoelectric material with a remanent polarization in a thickness direction. The layers are laminated so that a direction of an electric field is counter to a direction of the remanent polarization in one of the layers and the direction of the electric field coincides with the direction of the remanent polarization in the other three layers, or the direction of the electric field coincides with the direction of the remanent polarization in one of the layers and the direction of the electric field is counter to the direction of remanent polarization in the other three layers, when a voltage is applied to each piezoelectric material of the four-layered piezoelectric material via electrode layers.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: November 5, 2013
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventor: Yuichi Nishikubo
  • Publication number: 20130085390
    Abstract: Object is that an output sound pressure at transmission or an output voltage at reception of a predetermined higher resonance component becomes higher than those of the primary resonance component. The piezoelectric material layer 24 has an electrode on the surface of the piezoelectric material of between the layer and both ends, and outputs and inputs an electrical signal with this electrode. The piezoelectric material 24 has a remanent polarization in a thickness direction, the relationship of the (4P+1)th layer piezoelectric material from fixed end side is used as the basic relationship, piezoelectric materials are periodically arranged so that piezoelectric materials of (4p+2)th and (4p+3)th layer each has an opposite relationship, and (4p+4)th layer has the same relationship as the basic relationship.
    Type: Application
    Filed: September 7, 2012
    Publication date: April 4, 2013
    Applicant: KONICA MINOLTA MEDICAL & GRAPHIC, INC.
    Inventor: Yuichi NISHIKUBO
  • Publication number: 20130018266
    Abstract: In a laminated piezoelectric body, a laminated piezoelectric body manufacturing method, an ultrasound transducer, and an ultrasound diagnostic device according to the present invention, a plurality of mutually laminated piezoelectric bodies are electrically connected in parallel to each other, and each of the plurality of piezoelectric bodies arranges an orientation of residual polarization or a crystal axis that is related to an electrical displacement or a sign of an electric field due to a direct piezoelectric effect in a direction which reduces sensitivity in a first resonance mode and increases sensitivity in a second resonance mode of a higher order than the first resonance mode with respect to an axis of a first-level piezoelectric body on a fixed end-side.
    Type: Application
    Filed: February 23, 2011
    Publication date: January 17, 2013
    Applicant: KONICA MINOLTA MEDICAL & GRAPHIC, INC.
    Inventors: Yuichi Nishikubo, Kenji Ohnuma, Kiyokazu Morita, Kenji Suzuki, Hidekazu Kodama, Munehiro Date
  • Publication number: 20120256521
    Abstract: A laminated piezoelectric material has a four-layered piezoelectric material and electrode layers for applying a voltage to each layer of the four-layered piezoelectric material. Each piezoelectric material has an inorganic piezoelectric material with a remanent polarization in a thickness direction. The layers are laminated so that a direction of an electric field is counter to a direction of the remanent polarization in one of the layers and the direction of the electric field coincides with the direction of the remanent polarization in the other three layers, or the direction of the electric field coincides with the direction of the remanent polarization in one of the layers and the direction of the electric field is counter to the direction of remanent polarization in the other three layers, when a voltage is applied to each piezoelectric material of the four-layered piezoelectric material via electrode layers.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 11, 2012
    Applicant: KONICA MINOLTA MEDICAL & GRAPHIC, INC.
    Inventor: Yuichi NISHIKUBO
  • Publication number: 20120220872
    Abstract: An ultrasound probe includes a piezoelectric section to transmit and receive ultrasound, wherein the piezoelectric section includes a plurality of laminated piezoelectric layers each of which includes piezoelectric members and non-piezoelectric members both of which are arranged alternately in parallel to each other in an arrangement direction, and wherein the arrangement direction of the piezoelectric members and the non-piezoelectric members in at least one piezoelectric layer of the plurality of laminated piezoelectric layers is different from that in other one piezoelectric layer of the plurality of laminated piezoelectric layers.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 30, 2012
    Applicant: KONICA MINOLTA MEDICAL & GRAPHIC, INC.
    Inventor: Yuichi NISHIKUBO
  • Publication number: 20120065516
    Abstract: Disclosed is an organic piezoelectric material which has excellent piezoelectric characteristics and excellent handling properties. Also disclosed are an ultrasound transducer using the organic piezoelectric material, an ultrasound probe, and an ultrasound medical diagnostic imaging system. Specifically disclosed is an organic piezoelectric material which contains a base material that is formed from a resin, and a specific compound (1) that has at least one linking group selected from among specific linking groups. The organic piezoelectric material is characterized in that the relation shown below is satisfied when the CLogP values of the specific compound (1) and the base material are respectively represented by CLogP(1) and CLogP(base material). Relation: |CLogP(1)?CLogP(base material)|?3.0.
    Type: Application
    Filed: February 23, 2010
    Publication date: March 15, 2012
    Applicant: KONICA MINOLTA MEDICAL & GRAPHIC, INC.
    Inventors: Yuichi Nishikubo, Rie Fujisawa
  • Publication number: 20120041314
    Abstract: In the present invention, provided is an organic piezoelectric material specifically exhibiting high orientation and thermal stability as an organic piezoelectric material exhibiting an excellent piezoelectric characteristic and having piezoelectricity and pyroelectricity, which is capable of converting thermal or mechanical simulation into electrical energy, and also provided are an ultrasound probe for which the organic piezoelectric material is used, and an ultrasound image detector thereof. It is a feature that an organic piezoelectric material of the present invention possesses a compound represented by Formula (1) and a base material made of an organic polymeric material, satisfying Expression (1): |CLogP (1)?CLogP (base material)|?3.0 when CLogP values of the compound and the base material are expressed as CLogP (1) and CLogP (base material), respectively.
    Type: Application
    Filed: February 23, 2010
    Publication date: February 16, 2012
    Applicant: KONICA MINOLTA MEDICAL & GRAPHICS, INC.
    Inventors: Yuichi Nishikubo, Rie Fujisawa
  • Publication number: 20120004555
    Abstract: Provided is a stretching method of an organic piezoelectric material which sequentially performs a primary stretching step for carrying out primary stretching of an organic piezoelectric material which has not been stretched, a heat treatment step for heat treating the organic piezoelectric material subjected to primary stretching, and a cooling step for carrying out secondary stretching of the heat treated organic piezoelectric material while the organic piezoelectric material is cooled down to the room temperature, and is characterized in that tension is applied continuously to the organic piezoelectric material from the primary stretching step to the cooling step without releasing the tension, and heat treatment is carried out while keeping the tension in a range of 0.1-500 kPa.
    Type: Application
    Filed: March 5, 2010
    Publication date: January 5, 2012
    Applicant: Konica Minolta Medical & Graphic, Inc.
    Inventors: Kenji Ohnuma, Hiromi Akahori, Yuichi Nishikubo