Patents by Inventor Yuichi Senoo

Yuichi Senoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220212941
    Abstract: A method for producing a zeolite with improved Si/Al according to the present invention includes the steps of: subjecting a zeolite synthesized without using an organic structure directing agent to ion exchange, thereby obtaining a sodium-type, a proton-type, or an ammonium-type zeolite; and bringing the zeolite subjected to ion exchange into contact with an ammonium salt solution, thereby dealuminating the zeolite. It is preferable that the ammonium salt is any one of ammonium oxalate, ammonium fluoride, ammonium fluorosilicate, ammonium fluoroborate, ammonium fluorophosphate, ammonium fluorotitanate, and ammonium florozirconate. It is also preferable that the zeolite after ion exchange is exposed to water vapor, and is then brought into contact with the ammonium salt solution.
    Type: Application
    Filed: June 29, 2020
    Publication date: July 7, 2022
    Inventors: Yuichi SENOO, Katsuhiko HAYASHI, Junki TOMITA, Takahiro KOGAWA, Akihiro KANNO
  • Publication number: 20220203344
    Abstract: Provided is a beta zeolite satisfying P>76.79Q?29.514 in a range in which Q is less than 0.4011 nm, wherein, P represents an AB value that is an intensity ratio of A to B, A represents a diffraction intensity of a main peak of the beta zeolite observed by X-ray diffraction measurement, B represents a diffraction intensity of the (116) plane of ?-alumina obtained by X-ray diffraction measurement under the same conditions as those for the X-ray diffraction measurement on the beta zeolite, the ?-alumina being the standard substance 674a distributed by the American National Institute of Standards and Technology, and Q represents a lattice interplanar spacing of the main peak of the beta zeolite observed by X-ray diffraction measurement. It is preferable that the formula (1) above is satisfied in a range in which Q is from 0.3940 to 0.4000 nm.
    Type: Application
    Filed: June 29, 2020
    Publication date: June 30, 2022
    Inventors: Yuichi SENOO, Katsuhiko HAYASHI, Junki TOMITA, Takahiro KOGAWA, Akihiro KANNO
  • Patent number: 11302929
    Abstract: Provided is a method with which it is possible to easily produce an electrode catalyst having excellent catalytic performance such as kinetically controlled current density. The method involves: a dispersion liquid preparation step of preparing a dispersion liquid by mixing (i) at least one type of solvent selected from the group consisting of sulfoxide compounds and amide compounds, (ii) a catalyst carrier powder constituted by a metal oxide, (iii) a platinum compound, (iv) a transition metal compound, and (v) an aromatic compound including a carboxyl group; and a loading step of heating the dispersion liquid to thereby load a platinum alloy of platinum and a transition metal on a surface of the catalyst carrier powder.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 12, 2022
    Assignees: MITSUI MINING & SMELTING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuichi Senoo, Koichi Miyake, Koji Taniguchi, Hiromu Watanabe, Naohiko Abe, Tatsuya Arai
  • Patent number: 11189841
    Abstract: This method for producing an electrode catalyst includes: a dispersion liquid preparation step wherein a dispersion liquid is prepared by mixing (i) at least one solvent selected from the group consisting of sulfoxide compounds and amide compounds, (ii) a catalyst carrier powder composed of a metal oxide, (iii) a platinum compound, (iv) a transition metal compound and (v) an aromatic compound that contains a carboxyl group; a loading step wherein the dispersion liquid is heated so that a platinum alloy of platinum and a transition metal is loaded on the surface of the catalyst carrier powder; a solid-liquid separation step wherein a dispersoid is separated from the dispersion liquid after the loading step, thereby obtaining a catalyst powder wherein the catalyst carrier powder is loaded with the platinum alloy; and a heat treatment step wherein the catalyst powder is heated under vacuum or in a reducing gas atmosphere.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: November 30, 2021
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yuichi Senoo, Koichi Miyake, Koji Taniguchi, Hiromu Watanabe, Naohiko Abe
  • Publication number: 20190229345
    Abstract: This method for producing an electrode catalyst includes: a dispersion liquid preparation step wherein a dispersion liquid is prepared by mixing (i) at least one solvent selected from the group consisting of sulfoxide compounds and amide compounds, (ii) a catalyst carrier powder composed of a metal oxide, (iii) a platinum compound, (iv) a transition metal compound and (v) an aromatic compound that contains a carboxyl group; a loading step wherein the dispersion liquid is heated so that a platinum alloy of platinum and a transition metal is loaded on the surface of the catalyst carrier powder; a solid-liquid separation step wherein a dispersoid is separated from the dispersion liquid after the loading step, thereby obtaining a catalyst powder wherein the catalyst carrier powder is loaded with the platinum alloy; and a heat treatment step wherein the catalyst powder is heated under vacuum or in a reducing gas atmosphere.
    Type: Application
    Filed: September 29, 2017
    Publication date: July 25, 2019
    Inventors: Yuichi SENOO, Koichi MIYAKE, Koji TANIGUCHI, Hiromu WATANABE, Naohiko ABE
  • Publication number: 20190157688
    Abstract: Provided is a method with which it is possible to easily produce an electrode catalyst having excellent catalytic performance such as kinetically controlled current density. The method involves: a dispersion liquid preparation step of preparing a dispersion liquid by mixing (i) at least one type of solvent selected from the group consisting of sulfoxide compounds and amide compounds, (ii) a catalyst carrier powder constituted by a metal oxide, (iii) a platinum compound, (iv) a transition metal compound, and (v) an aromatic compound including a carboxyl group; and a loading step of heating the dispersion liquid to thereby load a platinum alloy of platinum and a transition metal on a surface of the catalyst carrier powder.
    Type: Application
    Filed: August 25, 2017
    Publication date: May 23, 2019
    Inventors: Yuichi SENOO, Koichi MIYAKE, Koji TANIGUCHI, Hiromu WATANABE, Naohiko ABE, Tatsuya ARAI
  • Patent number: 8435336
    Abstract: A deoxidizer includes a porous body of fluorite-type cerium oxide represented by CeOx (where x is a positive number smaller than 2) and having a reversible oxygen deficiency. The deoxidizer has a specific surface area of 0.6 to 1.8 m2/g and a pore median diameter of 1.6 to 5.3 ?m. The cerium oxide used for the deoxidizer is produced by: firing a cerium-containing salt in the atmosphere at 500° C. to 1400° C. for 1 to 20 hours, to produce fluorite-type cerium oxide composed of a porous body; and firing the cerium oxide at 700° C. to 1100° C. for 1 to 3 hours in a reducing atmosphere having a hydrogen concentration equal to or above the lower explosive limit, to remove oxygen from the cerium oxide and produce the fluorite-type cerium oxide represented by CeOx and having a reversible oxygen deficiency.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: May 7, 2013
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kazuya Kinoshita, Yuichi Senoo, Yousuke Shibata, Isamu Yashima
  • Patent number: 8328915
    Abstract: A dehumidifying deoxidizer containing oxygen-deficient cerium oxide and a dehumidifier is provided. The oxygen-deficient cerium oxide is preferably doped with an element increasing the oxygen absorption of the cerium oxide. The oxygen absorption sites of the cerium oxide are preferably obstructed by a site obstructing factor. The cerium oxide preferably has a fluorite type superlattice structure. Also provided are a dehumidifying and deoxidizing packet having the dehumidifying deoxidizer sealed in a bag-shaped, gas permeable casing and a dehumidifying and deoxidizing resin composition containing the dehumidifying deoxidizer and a gas permeable resin.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: December 11, 2012
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Yuichi Senoo, Kazuya Kinoshita, Isamu Yashima
  • Publication number: 20110086757
    Abstract: A deoxidizer includes a porous body of fluorite-type cerium oxide represented by CeOx (where x is a positive number smaller than 2) and having a reversible oxygen deficiency. The deoxidizer has a specific surface area of 0.6 to 1.8 m2/g and a pore median diameter of 1.6 to 5.3 ?m. The cerium oxide used for the deoxidizer is produced by: firing a cerium-containing salt in the atmosphere at 500° C. to 1400° C. for 1 to 20 hours, to produce fluorite-type cerium oxide composed of a porous body; and firing the cerium oxide at 700° C. to 1100° C. for 1 to 3 hours in a reducing atmosphere having a hydrogen concentration equal to or above the lower explosive limit, to remove oxygen from the cerium oxide and produce the fluorite-type cerium oxide represented by CeOx and having a reversible oxygen deficiency.
    Type: Application
    Filed: July 6, 2009
    Publication date: April 14, 2011
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Kazuya Kinoshita, Yuichi Senoo, Yousuke Shibata, Isamu Yashima
  • Publication number: 20090246556
    Abstract: A dehumidifying deoxidizer containing oxygen-deficient cerium oxide and a dehumidifier is provided. The oxygen-deficient cerium oxide is preferably doped with an element increasing the oxygen absorption of the cerium oxide. The oxygen absorption sites of the cerium oxide are preferably obstructed by a site obstructing factor. The cerium oxide preferably has a fluorite type superlattice structure. Also provided are a dehumidifying and deoxidizing packet having the dehumidifying deoxidizer sealed in a bag-shaped, gas permeable casing and a dehumidifying and deoxidizing resin composition containing the dehumidifying deoxidizer and a gas permeable resin.
    Type: Application
    Filed: June 26, 2007
    Publication date: October 1, 2009
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yuichi Senoo, Kazuya Kinoshita, Isamu Yashima