Patents by Inventor Yuichi Setsuhara

Yuichi Setsuhara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9078336
    Abstract: The present invention aims at providing a radio-frequency antenna unit capable of generating a high-density discharge plasma in a vacuum chamber. The radio-frequency antenna unit according to the present invention includes: a radio-frequency antenna through which a radio-frequency electric current can flow; a protective tube made of an insulator provided around the portion of the radio-frequency antenna that is in the vacuum chamber; and a buffer area provided between the radio-frequency antenna and the protective tube. The “buffer area” refers to an area where an acceleration of electrons is suppressed, and it can be formed, for example, with a vacuum or an insulator. Such a configuration can suppress an occurrence of an electric discharge between the antenna and the protective tube, enabling the generation of a high-density discharge plasma in the vacuum chamber.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: July 7, 2015
    Assignee: EMD CORPORATION
    Inventors: Yuichi Setsuhara, Akinori Ebe
  • Publication number: 20150132960
    Abstract: A substrate processing apparatus that can appropriately carry out desired plasma processing on a substrate. The substrate is accommodated in an accommodating chamber. An ion trap partitions the accommodating chamber into a plasma producing chamber and a substrate processing chamber. High-frequency antennas are disposed in the plasma producing chamber. A process gas is introduced into the plasma producing chamber. The substrate is mounted on a mounting stage disposed in the substrate processing chamber, and a bias voltage is applied to the mounting stage. The ion trap has grounded conductors and insulating materials covering surfaces of the conductors.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Applicants: TOKYO ELECTRON LIMITED, OSAKA UNIVERSITY
    Inventors: Eiichi Nishimura, Masato Morishima, Morihiro Takanashi, Akitaka Shimizu, Yuichi Setsuhara
  • Patent number: 8931433
    Abstract: The present invention aims at providing a plasma processing apparatus for performing a plasma processing on a planar substrate body to be processed, the apparatus being capable of generating the plasma with good uniformity and efficiently using the plasma, and having a high productivity. That is, the plasma processing apparatus according to the present invention includes: a vacuum chamber; one or plural antenna supporters (plasma generator supporters) projecting into the internal space of the vacuum chamber; radio-frequency antennas (plasma generators) attached to each antenna supporter; and a pair of substrate body holders provided across the antenna supporter in the vacuum chamber, for holding a planar substrate body to be processed.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: January 13, 2015
    Assignee: EMD Corporation
    Inventors: Yuichi Setsuhara, Akinori Ebe, Eiji Ino, Shinichiro Ishihara, Hajime Ashida, Akira Watanabe
  • Patent number: 8916034
    Abstract: A thin-film forming sputtering system capable of a sputtering process at a high rate. A thin-film forming sputtering system includes: a vacuum container; a target holder located inside the vacuum container; a target holder located inside the vacuum container; a substrate holder opposed to the target holder; a power source for applying a voltage between the target holder and the substrate holder; a magnetron-sputtering magnet provided behind the target holder, for generating a magnetic field having a component parallel to a target; and radio-frequency antennae for generating radio-frequency inductively-coupled plasma within a space in the vicinity of the target where the magnetic field generated by the magnetron-sputtering magnet has a strength equal to or higher than a predetermined level.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: December 23, 2014
    Assignee: EMD Corporation
    Inventors: Yuichi Setsuhara, Akinori Ebe, Jeon Geon Han
  • Publication number: 20140216928
    Abstract: A thin-film formation sputtering device capable of forming a high-quality thin film at high rates is provided. A sputtering device includes a target holder provided in a vacuum container, a substrate holder facing the target holder, a means for introducing a plasma generation gas into the vacuum container, a means for generating an electric field for sputtering in a region including a surface of a target, an antenna placement room provided between inner and outer surfaces of a wall of the vacuum container as well as separated from an inner space of the vacuum container by a dielectric window, and a radio-frequency antenna, which is provided in the antenna placement room, for generating a radio-frequency induction electric field in the region including the surface of the target held by the target holder.
    Type: Application
    Filed: August 30, 2011
    Publication date: August 7, 2014
    Applicant: EMD CORPORATION
    Inventors: Yuichi Setsuhara, Akinori Ebe
  • Publication number: 20140210337
    Abstract: A radio-frequency antenna includes a linear antenna conductor, a dielectric protective pipe provided around the antenna conductor, and a deposit shield provided around the protective pipe, the deposit shield covering at least one portion of the protective pipe and having at least one opening on any line extending along the length of the antenna conductor. Although the thin-film material adheres to the surfaces of the protective pipe and the deposit shield, the deposited substance has at least one discontinuous portion in the longitudinal direction of the antenna conductor. Therefore, in the case where the thin-film material is electrically conductive, the blocking of the radio-frequency induction electric field is prevented. In the case where the thin-film material is not electrically conductive, an attenuation in the intensity of the radio-frequency induction electric field is suppressed.
    Type: Application
    Filed: August 30, 2011
    Publication date: July 31, 2014
    Applicant: EMD CORPORATION
    Inventors: Yuichi Setsuhara, Akinori Ebe
  • Publication number: 20130220548
    Abstract: A plasma processing device has: a metallic vacuum chamber; an antenna-placing section in which a radio-frequency antenna is placed inside a through-hole (hollow space) provided in an upper wall of the vacuum chamber; and a dielectric separating plate covering the entire inner surface of the upper wall. In this plasma processing device, the entire inner surface side of the upper wall is covered with the separating plate so that surfaces in different level otherwise formed when a smaller separating plate is used is not formed between the inner surface and the separating plate. Therefore, the generation of particles caused by the formation of adhered materials on the surfaces in different level is prevented.
    Type: Application
    Filed: September 9, 2011
    Publication date: August 29, 2013
    Applicant: EMD CORPORATION
    Inventors: Yuichi Setsuhara, Akinori Ebe
  • Publication number: 20130192759
    Abstract: A plasma processing device according to the present invention includes a plasma processing chamber, a plasma producing chamber communicating with the plasma processing chamber, a radio-frequency antenna for producing plasma, a plasma control plate for controlling the energy of electrons in the plasma, as well as an operation rod and a moving mechanism for regulating the position of the plasma control plate. In this plasma processing device, the energy distribution of the electrons of the plasma produced in the plasma producing chamber can be controlled by regulating the distance between the radio-frequency antenna 16 and the plasma control plate by simply moving the operation rod in its longitudinal direction by the moving mechanism. Therefore, a plasma process suitable for the kind of gas molecules to be dissociated and/or their dissociation energy can be easily performed.
    Type: Application
    Filed: August 2, 2011
    Publication date: August 1, 2013
    Applicants: EMD CORPORATION, OSAKA UNIVERSITY
    Inventors: Yuichi Setsuhara, Akinori Ebe
  • Patent number: 8444806
    Abstract: The present invention aims to provide a plasma generator capable of creating a spatially uniform distribution of high-density plasma. This object is achieved by the following construction. Multiple antennas are located on the sidewall of a vacuum chamber, and a RF power source is connected to three or four antennas in parallel via a plate-shaped conductor. The length of the conductor of each antenna is shorter than the quarter wavelength of the induction electromagnetic wave generated within the vacuum chamber. Setting the length of the conductor of the antenna in such a manner prevents the occurrence of a standing wave and thereby maintains the uniformity of the plasma within the vacuum chamber. In addition, the plate-shaped conductor improves the heat-releasing efficiency, which also contributes to the suppression of the impedance.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 21, 2013
    Assignees: Japan Science and Technology Agency
    Inventors: Shoji Miyake, Akinori Ebe, Tatsuo Shoji, Yuichi Setsuhara
  • Patent number: 8419894
    Abstract: The present invention aims to provide a plasma generator capable of creating a spatially uniform distribution of high-density plasma. This object is achieved by the following construction. Multiple antennas are located on the sidewall of a vacuum chamber, and a RF power source is connected to three or four antennas in parallel via a plate-shaped conductor. The length of the conductor of each antenna is shorter than the quarter wavelength of the induction electromagnetic wave generated within the vacuum chamber. Setting the length of the conductor of the antenna in such a manner prevents the occurrence of a standing wave and thereby maintains the uniformity of the plasma within the vacuum chamber. In addition, the plate-shaped conductor improves the heat-releasing efficiency, which also contributes to the suppression of the impedance.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 16, 2013
    Assignees: Japan Science and Technology Agency
    Inventors: Shoji Miyake, Akinori Ebe, Tatsuo Shoji, Yuichi Setsuhara
  • Publication number: 20120031563
    Abstract: An inductively coupled plasma processing device using a radio-frequency electric discharge, including: a vacuum container; an antenna-placing section provided between an inner surface and an outer surface of a wall of the vacuum container; a radio-frequency antenna placed in the antenna-placing section, the radio-frequency antenna being terminated without completing one turn; and a dielectric separating member separating the antenna-placing section and an internal space of the vacuum container, wherein the radio-frequency antenna has a length equal to or shorter than one quarter of a wavelength of the radio-frequency waves.
    Type: Application
    Filed: March 10, 2010
    Publication date: February 9, 2012
    Applicants: TOKYO ELECTRON LIMITED, EMD CORPORATION
    Inventors: Yuichi Setsuhara, Eiichi Nishimura, Akinori Ebe
  • Publication number: 20120031562
    Abstract: The present invention provides a plasma processing device capable of inducing a strong radio-frequency electric field within a vacuum container while preventing sputtering of the antenna conductor, an increase in the temperature of the antenna conductor and the formation of particles. A plasma processing device according to the present invention includes a vacuum container, a radio-frequency antenna placed between an inner surface and an outer surface of a wall of the vacuum container, and a dielectric separating member for separating the radio-frequency antenna from an internal space of the vacuum container. As compared to a device using an external antenna, the present device can induce a stronger magnetic field in the vacuum container. The separating member has the effects of preventing the radio-frequency antenna from undergoing sputtering by the plasma produced in the vacuum container, suppressing an increase in the temperature of the radio-frequency antenna, and preventing the formation of particles.
    Type: Application
    Filed: March 10, 2010
    Publication date: February 9, 2012
    Applicant: EMD CORPORATION
    Inventors: Yuichi Setsuhara, Akinori Ebe
  • Publication number: 20110203922
    Abstract: A thin-film forming sputtering system capable of a sputtering process at a high rate. A thin-film forming sputtering system includes: a vacuum container; a target holder located inside the vacuum container; a target holder located inside the vacuum container; a substrate holder opposed to the target holder; a power source for applying a voltage between the target holder and the substrate holder: a magnetron-sputtering magnet provided behind the target holder, for generating a magnetic field having a component parallel to a target; and radio-frequency antennae for generating radio-frequency inductively-coupled plasma within a space in the vicinity of the target where the magnetic field generated by the magnetron sputtering magnet has a strength equal to or higher than a predetermined level.
    Type: Application
    Filed: August 25, 2009
    Publication date: August 25, 2011
    Applicant: EMD Corporation
    Inventors: Yuichi Setsuhara, Akinori Ebe, Jeong Han
  • Patent number: 7988835
    Abstract: There are provided a method and an apparatus which form silicon dots having substantially uniform particle diameters and exhibiting a substantially uniform density distribution directly on a substrate at a low temperature. A hydrogen gas (or a hydrogen gas and a silane-containing gas) is supplied into a vacuum chamber (1) provided with a silicon sputter target (e.g., target 30), or the hydrogen gas and the silane-containing gas are supplied into the chamber (1) without arranging the silicon sputter target therein, a high-frequency power is applied to the gas(es) so that plasma is generated such that a ratio (Si(288 nm)/H?) between an emission intensity Si(288 nm) of silicon atoms at a wavelength of 288 nm and an emission intensity H? of hydrogen atoms at a wavelength of 484 nm in plasma emission is 10.0 or lower, and preferably 3.0 or lower, or 0.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: August 2, 2011
    Assignees: Nissin Electric Co., Ltd., EMD Corporation
    Inventors: Eiji Takahashi, Takashi Mikami, Shigeaki Kishida, Kenji Kato, Atsushi Tomyo, Tsukasa Hayashi, Kiyoshi Ogata, Yuichi Setsuhara
  • Publication number: 20110080094
    Abstract: The present invention aims at providing a radio-frequency antenna unit capable of generating a high-density discharge plasma in a vacuum chamber. The radio-frequency antenna unit according to the present invention includes: a radio-frequency antenna through which a radio-frequency electric current can flow; a protective tube made of an insulator provided around the portion of the radio-frequency antenna that is in the vacuum chamber; and a buffer area provided between the radio-frequency antenna and the protective tube. The “buffer area” refers to an area where an acceleration of electrons is suppressed, and it can be formed, for example, with a vacuum or an insulator. Such a configuration can suppress an occurrence of an electric discharge between the antenna and the protective tube, enabling the generation of a high-density discharge plasma in the vacuum chamber.
    Type: Application
    Filed: March 3, 2009
    Publication date: April 7, 2011
    Applicant: EMD CORPORATION
    Inventors: Yuichi Setsuhara, Akinori Ebe
  • Patent number: 7880392
    Abstract: Plasma producing method and apparatus wherein a plurality of high-frequency antennas are arranged in a plasma producing chamber, and a high-frequency power supplied from a high-frequency power supply device (including a power source, a phase controller and the like) is applied to a gas in the chamber from the antennas to produce inductively coupled plasma. At least some of the plurality of high-frequency antennas are arranged in a fashion of such parallel arrangement that the antennas successively neighbor to each other and each of the antennas is opposed to the neighboring antenna. The high-frequency power supply device controls a phase of a high-frequency voltage applied to each antenna, and thereby controls an electron temperature of the inductively coupled plasma.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: February 1, 2011
    Assignees: Nissin Electric Co., Ltd., EMD Corporation
    Inventors: Kenji Kato, Hiroshige Deguchi, Hitoshi Yoneda, Kiyoshi Kubota, Akinori Ebe, Yuichi Setsuhara
  • Publication number: 20100304046
    Abstract: The present invention aims to provide a plasma generator capable of creating a spatially uniform distribution of high-density plasma. This object is achieved by the following construction. Multiple antennas are located on the sidewall of a vacuum chamber, and a RF power source is connected to three or four antennas in parallel via a plate-shaped conductor. The length of the conductor of each antenna is shorter than the quarter wavelength of the induction electromagnetic wave generated within the vacuum chamber. Setting the length of the conductor of the antenna in such a manner prevents the occurrence of a standing wave and thereby maintains the uniformity of the plasma within the vacuum chamber. In addition, the plate-shaped conductor improves the heat-releasing efficiency, which also contributes to the suppression of the impedance.
    Type: Application
    Filed: July 14, 2010
    Publication date: December 2, 2010
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Shoji Miyake, Akinori Ebe, Tatsuo Shoji, Yuichi Setsuhara
  • Publication number: 20100263797
    Abstract: The present invention aims at providing a plasma processing apparatus for performing a plasma processing on a planar substrate body to be processed, the apparatus being capable of generating the plasma with good uniformity and efficiently using the plasma, and having a high productivity. That is, the plasma processing apparatus according to the present invention includes: a vacuum chamber; one or plural antenna supporters (plasma generator supporters) projecting into the internal space of the vacuum chamber; radio-frequency antennas (plasma generators) attached to each antenna supporter; and a pair of substrate body holders provided across the antenna supporter in the vacuum chamber, for holding a planar substrate body to be processed.
    Type: Application
    Filed: November 12, 2008
    Publication date: October 21, 2010
    Applicants: EMD CORPORATION, EVATECH CO., LTD.
    Inventors: Yuichi Setsuhara, Akinori Ebe, Eiji Ino, Shinichiro Ishihara, Hajime Ashida, Akira Watanabe
  • Patent number: 7785441
    Abstract: The present invention aims to provide a plasma generator capable of creating a spatially uniform distribution of high-density plasma. This object is achieved by the following construction. Multiple antennas 16 are located on the sidewall of a vacuum chamber 11, and a RF power source is connected to three or four antennas 16 in parallel via a plate-shaped conductor 19. The length of the conductor of each antenna 16 is shorter than the quarter wavelength of the induction electromagnetic wave generated within the vacuum chamber. Setting the length of the conductor of the antenna in such a manner prevents the occurrence of a standing wave and thereby maintains the uniformity of the plasma within the vacuum chamber. In addition, the plate-shaped conductor 19 improves the heat-releasing efficiency, which also contributes to the suppression of the impedance.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: August 31, 2010
    Assignees: Japan Science and Technology Agency
    Inventors: Shoji Miyake, Akinori Ebe, Tatsuo Shoji, Yuichi Setsuhara
  • Publication number: 20100206846
    Abstract: A substrate processing apparatus that can appropriately carry out desired plasma processing on a substrate. The substrate is accommodated in an accommodating chamber. An ion trap partitions the accommodating chamber into a plasma producing chamber and a substrate processing chamber. High-frequency antennas are disposed in the plasma producing chamber. A process gas is introduced into the plasma producing chamber. The substrate is mounted on a mounting stage disposed in the substrate processing chamber, and a bias voltage is applied to the mounting stage. The ion trap has grounded conductors and insulating materials covering surfaces of the conductors.
    Type: Application
    Filed: February 16, 2010
    Publication date: August 19, 2010
    Applicants: TOKYO ELECTRON LIMITED, Osaka University
    Inventors: Eiichi Nishimura, Masato Morishima, Morihiro Takanashi, Akitaka Shimizu, Yuichi Setsuhara