Patents by Inventor Yuichi Shimakawa

Yuichi Shimakawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10124558
    Abstract: Provided are a thermal expansion suppressing member having negative thermal expansion properties and a metal-based anti-thermally-expansive member having small thermal expansion. More specifically, provided are a thermal expansion suppressing member, including at least an oxide represented by the following general formula (1), and an anti-thermally-expansive member, including a metal having a positive linear expansion coefficient at 20° C., and a solid body including at least an oxide represented by the following general formula (1), the metal and solid being joined to each other: (Bi1-xMx)NiO3 (1) where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: November 13, 2018
    Assignees: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Patent number: 9461238
    Abstract: Provided are a piezoelectric thin film having good piezoelectricity in which a rhombohedral structure and a tetragonal structure are mixed, and a piezoelectric element using the piezoelectric thin film. The piezoelectric thin film includes a perovskite type metal oxide, in which the perovskite type metal oxide is a mixed crystal system of at least a rhombohedral structure and a tetragonal structure, and a ratio between an a-axis lattice parameter and a c-axis lattice parameter of the tetragonal structure satisfies 1.15?c/a?1.30. The piezoelectric element includes on a substrate: the above-mentioned piezoelectric thin film; and a pair of electrodes provided in contact with the piezoelectric thin film.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: October 4, 2016
    Assignees: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY
    Inventors: Makoto Kubota, Kenichi Takeda, Jumpei Hayashi, Mikio Shimada, Yuichi Shimakawa, Masaki Azuma, Yoshitaka Nakamura, Masanori Kawai
  • Patent number: 9362482
    Abstract: Provided are a bismuth-based piezoelectric material whose insulation property is improved while its performance as a piezoelectric body is not impaired and a piezoelectric device using the piezoelectric material. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Bix(Fe1-yCoy)O3??(1) where 0.95?x?1.25 and 0?y?0.30, and a root mean square roughness Rq (nm) of a surface of the piezoelectric material satisfies a relationship of 0<Rq?25y+2 (0?y?0.30).
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: June 7, 2016
    Assignees: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Makoto Kubota, Kenji Takashima, Masaki Azuma, Yoshitaka Nakamura, Yuichi Shimakawa, Takashi Iijima, Bong-Yeon Lee
  • Patent number: 8974729
    Abstract: Provided are resin-based and metal-based anti-thermally-expansive members each having small thermal expansion. More specifically, provided are an anti-thermally-expansive resin and an anti-thermally-expansive metal, each including a resin or a metal having a positive linear expansion coefficient at 20° C. and a solid particle dispersed in the resin or metal, in which the solid particle includes at least an oxide represented by the following general formula (1): (Bi1-xMx)NiO3 (1), where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 10, 2015
    Assignees: Canon Kabushiki Kaisha, Kyoto University
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Publication number: 20140234643
    Abstract: Provided are a thermal expansion suppressing member having negative thermal expansion properties and a metal-based anti-thermally-expansive member having small thermal expansion. More specifically, provided are a thermal expansion suppressing member, including at least an oxide represented by the following general formula (1), and an anti-thermally-expansive member, including a metal having a positive linear expansion coefficient at 20° C., and a solid body including at least an oxide represented by the following general formula (1), the metal and solid being joined to each other: (Bi1-xMx)NiO3 (1) where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Patent number: 8753749
    Abstract: Provided are a thermal expansion suppressing member having negative thermal expansion properties and a metal-based anti-thermally-expansive member having small thermal expansion. More specifically, provided are a thermal expansion suppressing member, including at least an oxide represented by the following general formula (1), and an anti-thermally-expansive member, including a metal having a positive linear expansion coefficient at 20° C., and a solid body including at least an oxide represented by the following general formula (1), the metal and solid being joined to each other: (Bi1-xMx)NiO3 (1) where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: June 17, 2014
    Assignees: Canon Kabushiki Kaisha, Kyoto University
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Publication number: 20140134038
    Abstract: Provided are resin-based and metal-based anti-thermally-expansive members each having small thermal expansion. More specifically, provided are an anti-thermally-expansive resin and an anti-thermally-expansive metal, each including a resin or a metal having a positive linear expansion coefficient at 20° C. and a solid particle dispersed in the resin or metal, in which the solid particle includes at least an oxide represented by the following general formula (1): (Bi1-xMx)NiO3 (1), where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 15, 2014
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Patent number: 8664316
    Abstract: Provided are resin-based and metal-based anti-thermally-expansive members each having small thermal expansion. More specifically, provided are an anti-thermally-expansive resin and an anti-thermally-expansive metal, each including a resin or a metal having a positive linear expansion coefficient at 20° C. and a solid particle dispersed in the resin or metal, in which the solid particle includes at least an oxide represented by the following general formula (1): (Bi1-xMx)NiO3??(1), where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 4, 2014
    Assignees: Canon Kabushiki Kaisha, Kyoto University
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Patent number: 8400047
    Abstract: Provided are a bismuth-based piezoelectric material whose insulation property is improved while its performance as a piezoelectric body is not impaired, and a piezoelectric device using the piezoelectric material. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Bix(Fe1-yCoy)O3??(1) where 0.95?x?1.25 and 0?y?0.30, and a root mean square roughness Rq (nm) of a surface of the piezoelectric material satisfies a relationship of 0<Rq?25y+2 (0?y?0.30).
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: March 19, 2013
    Assignees: Canon Kabushiki Kaisha, Kyoto University, National Institute of Advanced Industrial Science and Technology
    Inventors: Makoto Kubota, Kenji Takashima, Masaki Azuma, Yoshitaka Nakamura, Yuichi Shimakawa, Takashi Iijima, Bong-Yeon Lee
  • Publication number: 20120319533
    Abstract: Provided are a piezoelectric thin film having good piezoelectricity in which a rhombohedral structure and a tetragonal structure are mixed, and a piezoelectric element using the piezoelectric thin film. The piezoelectric thin film includes a perovskite type metal oxide, in which the perovskite type metal oxide is a mixed crystal system of at least a rhombohedral structure and a tetragonal structure, and a ratio between an a-axis lattice parameter and a c-axis lattice parameter of the tetragonal structure satisfies 1.15?c/a?1.30. The piezoelectric element includes on a substrate: the above-mentioned piezoelectric thin film; and a pair of electrodes provided in contact with the piezoelectric thin film.
    Type: Application
    Filed: February 28, 2011
    Publication date: December 20, 2012
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kenichi Takeda, Jumpei Hayashi, Mikio Shimada, Yuichi Shimakawa, Masaki Azuma, Yoshitaka Nakamura, Masanori Kawai
  • Patent number: 8236724
    Abstract: An adhesive layer 3 is disposed between a carbon particle 2 and a catalyst substance 1 of a catalyst-supporting particle for a fuel cell containing the carbon particle 2 and the catalyst substance 1. Thereby, the catalyst-supporting particle for fuel cell can be obtained in which a contact resistance between the catalyst substance and the carbon particle supporting the same is lower, and the aggregation of the catalyst substance is suppressed. A catalyst electrode for a fuel cell and the fuel cell using the above particle have a higher output power and an excellent durability.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: August 7, 2012
    Assignee: NEC Corporation
    Inventors: Tsutomu Yoshitake, Shin Nakamura, Sadanori Kuroshima, Hidekazu Kimura, Hideto Imai, Yuichi Shimakawa, Takashi Manako, Yoshimi Kubo
  • Publication number: 20120037842
    Abstract: Provided are resin-based and metal-based anti-thermally-expansive members each having small thermal expansion. More specifically, provided are an anti-thermally-expansive resin and an anti-thermally-expansive metal, each including a resin or a metal having a positive linear expansion coefficient at 20° C. and a solid particle dispersed in the resin or metal, in which the solid particle includes at least an oxide represented by the following general formula (1): (Bi1-xMx)NiO3 (1), where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 16, 2012
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Publication number: 20120040196
    Abstract: Provided are a thermal expansion suppressing member having negative thermal expansion properties and a metal-based anti-thermally-expansive member having small thermal expansion. More specifically, provided are a thermal expansion suppressing member, including at least an oxide represented by the following general formula (1), and an anti-thermally-expansive member, including a metal having a positive linear expansion coefficient at 20° C., and a solid body including at least an oxide represented by the following general formula (1), the metal and solid being joined to each other: (Bi1-xMx)NiO3 (1) where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 16, 2012
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Publication number: 20110079883
    Abstract: Provided is a ferroelectric thin film formed on a substrate and having an amount of remanent polarization increased in its entirety. The ferroelectric thin film contains a perovskite-type metal oxide formed on a substrate, the ferroelectric thin film containing a column group formed of multiple columns each formed of a spinel-type metal oxide, in which the column group is in a state of standing in a direction perpendicular to a surface of the substrate, or in a state of slanting at a slant angle in a range of ?10° or more to +10° or less with respect to the perpendicular direction.
    Type: Application
    Filed: September 24, 2010
    Publication date: April 7, 2011
    Applicants: CANON KABUSHIKI KAISHA, TOKYO INSTITUTE OF TECHNOLOGY, KYOTO UNIVERSITY
    Inventors: MIKIO SHIMADA, TOSHIAKI AIBA, TOSHIHIRO IFUKU, JUMPEI HAYASHI, MAKOTO KUBOTA, HIROSHI FUNAKUBO, YUICHI SHIMAKAWA, MASAKI AZUMA, YOSHITAKA NAKAMURA
  • Publication number: 20100231095
    Abstract: Provided are a bismuth-based piezoelectric material whose insulation property is improved while its performance as a piezoelectric body is not impaired and a piezoelectric device using the piezoelectric material. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Bix(Fe1-yCoy)O3??(1) where 0.95?x?1.25 and 0?y?0.30, and a root mean square roughness Rq (nm) of a surface of the piezoelectric material satisfies a relationship of 0<Rq?25y+2 (0?y?0.30).
    Type: Application
    Filed: March 10, 2010
    Publication date: September 16, 2010
    Applicants: Canon Kabushiki Kaisha, Kyoto University, National Institute of Advanced Industrial Science Technology
    Inventors: Makoto Kubota, Kenji Takashima, Masaki Azuma, Yoshitaka Nakamura, Yuichi Shimakawa, Takashi Iijima, Bong-Yeon Lee
  • Patent number: 7700211
    Abstract: An adhesion layer containing a second solid polymer electrolyte is disposed between a solid polymer electrolyte membrane and a fuel electrode and/or an oxidant electrode containing a first solid polymer electrolyte and a catalyst substance. The solid polymer electrolyte membrane and the adhesion layer are made of the same solid polymer electrolyte. In this manner, the adhesion at the interface between the electrode surface and the solid polymer electrolyte membrane is enhanced to implement the elevation of the cell characteristics and the elevation of the reliability of the cell.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: April 20, 2010
    Assignee: NEC Corporation
    Inventors: Shin Nakamura, Yoshimi Kubo, Yuichi Shimakawa, Takashi Manako, Hidekazu Kimura, Hideto Imai, Sadanori Kuroshima, Tsutomu Yoshitake, Takeshi Obata
  • Publication number: 20090305096
    Abstract: A liquid fuel supply type fuel cell is provided in which water present in the oxidizer electrode is promptly removed and evaporated, thereby achieving high output. A fuel cell electrode and methods for manufacturing the same are also provided. In a fuel cell, a base material is provided with a hydrophobic layer on the surface in contact with a catalyst layer for discharging water promptly, and a hydrophilic layer from the hydrophobic layer towards the outside of the cell for evaporating water which has passed through the hydrophobic layer from the surface.
    Type: Application
    Filed: August 13, 2009
    Publication date: December 10, 2009
    Inventors: Hidekazu Kimura, Tsutomu Yoshitake, Sadanori Kuroshima, Shin Nakamura, Yuichi Shimakawa, Takashi Manako, Hideto Imai, Suguru Watanabe, Yoshimi Kubo
  • Patent number: 7267866
    Abstract: A heat controller for an object, having a composite material formed of a base material radiating a large amount of heat at a high-temperature phase and a phase-change substance having insulation properties at a high-temperature phase, having metallic properties at a low-temperature phase, radiating a small amount of heat at a low-temperature phase, and having a high reflectivity in the thermal infrared region at a low-temperature phase.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: September 11, 2007
    Assignee: NEC Corporation
    Inventors: Ichiro Mase, Yasuyuki Nakamura, Yuichi Shimakawa, Mayumi Kosaka, Yoshimi Kubo
  • Patent number: 7115337
    Abstract: A plurality of fuel electrodes are disposed on one surface of a solid polyelectrolyte membrane, while a plurality of oxidizer electrodes are disposed on the other surface of the same to create a plurality of unit cells which share the solid polyelectrolyte membrane. These unit cells are electrically connected through connection electrode extending through the solid polyelectrolyte membrane. A groove is formed in a region of the solid polyelectrolyte membrane between adjacent unit cells. This groove limits the migration of hydrogen ions to adjacent unit cells to prevent a reduction in voltage. The resulting solid polymer fuel cell, which is in a simple structure and reduced in size, can provide high power.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: October 3, 2006
    Assignee: NEC Corporation
    Inventors: Hidekazu Kimura, Suguru Watanabe, Tsutomu Yoshitake, Sadanori Kuroshima, Shin Nakamura, Yuichi Shimakawa, Takashi Manako, Hideto Imai, Yoshimi Kubo
  • Publication number: 20060110652
    Abstract: The present invention provides a catalyst electrode and a manufacturing method of the same. When the catalyst electrode is used for a fuel cell, it is capable of suppressing an air, which is a by-product generated at a fuel electrode on a surface of the electrode, and quickly removing the adsorbed bubble-like air. Accordingly, the catalyst electrode is capable of increasing an effective catalyst surface of the fuel electrode and enhancing an output power of the fuel cell. Moreover, the present invention provides fuel cell and a manufacturing method of the same. The fuel cell is capable of suppressing an air, which is a by-product generated at the fuel electrode on the surface of the electrode and quickly removing the adsorbed bubble-like air. Accordingly, the fuel cell is capable of increasing an effective catalyst surface of the fuel electrode and enhancing an output power thereof.
    Type: Application
    Filed: May 28, 2003
    Publication date: May 25, 2006
    Inventors: Hideto Imai, Tsutomu Yoshitake, Yuichi Shimakawa, Takashi Manako, Shin Nakamura, Hidekazu Kimura, Sadanori Kuroshima, Yoshimi Kubo