Patents by Inventor Yuichi Takemura

Yuichi Takemura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141603
    Abstract: A seismic reinforcement device for a bridge includes a first member having a projecting portion and a second member having a depressed portion. The device has a horizontal force sharing function in which the projecting and the depressed portions are freely fitted to and engaged with one another to constitute a shear key and resist a horizontal force by causing the first member to be coupled to and supported by any one of the substructure and the superstructure and causing the second member to be coupled to and supported by the other of the substructure and the superstructure. In addition, the device has a level difference preventive function that suppresses dropping of the superstructure and reduces a level difference of the substructure and the superstructure by interposing a spacer having a predetermined thickness between the first and second members or between the substructure or the superstructure and the device.
    Type: Application
    Filed: December 22, 2021
    Publication date: May 2, 2024
    Applicants: SHO-BOND CORPORATION, BRIDGE BEARING MANUFACTURE CO., LTD.
    Inventors: Hiroshi TAKEMURA, Yuki ANDOH, Yoshisato HIRATSUKA, Hironori OGURA, Yuichi GODA
  • Publication number: 20140283794
    Abstract: A pressure control valve controls a pressure of a gaseous fuel according to an engine operation state. The pressure control valve has a movable valve body, a manifold chamber that communicates with an intake manifold, and a passage that is connected to an injector. An intake manifold pressure from the manifold chamber moves the movable valve body in a valve opening direction and an output pressure from the passage moves the movable valve body in a valve closing direction. In such manner, the pressure control valve changes a magnitude of a differential pressure between the output pressure and the intake manifold pressure according to a magnitude of the intake manifold pressure.
    Type: Application
    Filed: December 5, 2013
    Publication date: September 25, 2014
    Inventors: Akira Takagi, Makoto Kondo, Yuichi Takemura
  • Patent number: 8464672
    Abstract: A variable valve timing control apparatus adjusts the rotation phase (VCT phase) of an engine camshaft by selectively supplying oil to an advancement chamber and a retardation chamber, and includes a lock pin which is controlled for being moveable to a first position, in which the rotation phase is adjustable, and a second position, in which the camshaft is locked at a specific rotation phase. When the lock pin is displaced from the first position, oil becomes enabled to pass between the advancement chamber and retardation chamber, to thereby enabling the rotation phase to be changed to the specific rotation phase by supplying oil to an appropriate one of the advancement chamber and a retardation chamber, for initiating locking.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: June 18, 2013
    Assignee: DENSO CORPORATION
    Inventors: Yuichi Takemura, Minoru Wada
  • Patent number: 8457864
    Abstract: A variable valve timing control apparatus for an engine includes a hydraulic variable valve timing unit and an oil pressure control device. The variable valve timing unit has a plurality of control ranges and an ambiguity range. The apparatus learns a hold control amount for each of the plurality of control ranges when a predetermined condition is satisfied, and the hold control amount is required to control the oil pressure control device to maintain the actual VCT phase. When the target VCT phase is positioned in the ambiguity range, if a difference between the actual and target VCT phases is stably greater than a predetermined value, the apparatus switches the presently-used hold control amount learning value of one control range into the learning value for the other control range in order to compute the VCT control amount.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: June 4, 2013
    Assignee: Denso Corporation
    Inventor: Yuichi Takemura
  • Patent number: 8302462
    Abstract: An engine ECU executes operations including: extracting vibration intensities of a plurality of frequency bands from vibration detected by a knock sensor, multiplying the extracted vibration intensity of each frequency band by a weight coefficient and adding the results in correspondence with crank angles to calculate integrated values of every five degrees; calculating a coefficient of correlation based on a result of comparison between a vibration waveform of a frequency band and a knock waveform model prepared in advance; calculating a knock intensity; determining occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity; and determining no occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: November 6, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Patent number: 8297240
    Abstract: A variable valve timing control apparatus for an internal combustion engine having a crankshaft and a camshaft, the variable valve timing control apparatus including a hydraulic variable valve timing device, an intermediate lock mechanism, and an oil pressure control device. The control apparatus learns an intermediate lock position to obtain a learning value of the intermediate lock position when the intermediate lock mechanism locks the VCT phase at the intermediate lock position. The control apparatus computes an actual VCT phase based on the learning value of the intermediate lock position. The control apparatus computes a target VCT phase in accordance with an operational condition of the engine based on the learning value of the intermediate lock position. The control apparatus controls a control amount of the oil pressure control device such that the actual VCT phase becomes the target VCT phase.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: October 30, 2012
    Assignee: Denso Corporation
    Inventors: Masaomi Inoue, Yuichi Takemura
  • Patent number: 8261704
    Abstract: A variable valve timing control apparatus is provided for an internal combustion engine that has a crankshaft, a camshaft, a hydraulic variable valve timing unit, a lock pin, and a hydraulic control valve. The hydraulic control valve is configured to control oil pressure that actuates the variable valve timing unit and the lock pin. The control apparatus switches a control, based on an operational state, between (a) a variable cam timing (VCT) phase control for controlling the VCT phase to a target phase and (b) a lock pin projection control for allowing the lock pin to project. The control apparatus executes, when an abnormality occurs, a foreign object release control for changing a control amount of the hydraulic control valve based on a predetermined pattern, wherein the control apparatus changes the predetermined pattern depending on the abnormality in the execution of the foreign object release control.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: September 11, 2012
    Assignee: Denso Corporation
    Inventor: Yuichi Takemura
  • Patent number: 8215272
    Abstract: In a variable valve timing control apparatus, a hydraulic variable valve timing device adjusts valve timing by changing a VCT phase. In a lock mode, the lock pin is allowed to be displaced in a lock direction for locking the VCT phase, and the VCT phase is slightly shifted in a lock-mode VCT phase shift direction corresponding to one of an advance direction and a retard direction. A lock control unit shifts the VCT phase in a direction opposite from the VCT phase shift direction if the VCT phase is located on a lock-mode VCT phase shift direction side of the intermediate lock position when the engine becomes equal to or less than a first rotational speed, and otherwise the lock control unit allows the lock pin to be displaced in the lock direction.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: July 10, 2012
    Assignee: Denso Corporation
    Inventors: Yuichi Takemura, Minoru Wada
  • Patent number: 8205489
    Abstract: An engine ECU executes a program including: detecting a magnitude of vibration of an engine; detecting a vibration waveform of the engine based on the magnitude; calculating a correlation coefficient, in the case where the engine speed is smaller than a threshold value, using the sum of values each determined by subtracting a positive reference value from a magnitude of a knock waveform model, as an area of the knock waveform model and, calculating the correlation coefficient, in the case where the engine speed is not smaller than the threshold value, using the area of the whole knock waveform model; and determining whether or not knocking has occurred using the correlation coefficient. The correlation coefficient is calculated by dividing by the area the sum of differences that are each the difference between the magnitude on the vibration waveform and the magnitude on the knock waveform model.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: June 26, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Patent number: 8146550
    Abstract: A variable valve timing control apparatus for an engine includes a variable valve timing unit, a lock pin, a hydraulic control unit, and a lock control unit. The lock control unit causes the lock pin to lock the camshaft phase at an intermediate lock phase when a lock request is issued. When the lock request is issued, the camshaft phase is shifted in a reference direction to go beyond the intermediate lock phase while the lock pin is urged in a lock direction. When the camshaft phase stops around the intermediate lock phase, the lock control unit changes a control amount of the hydraulic control unit by a certain amount to shift the camshaft phase. The lock control unit determines that the camshaft phase has been locked at the intermediate lock phase when the camshaft phase is not shifted even after the lock control unit changes the control amount.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: April 3, 2012
    Assignee: Denso Corporation
    Inventor: Yuichi Takemura
  • Patent number: 8005607
    Abstract: An engine ECU executes a program that includes: calculating a median value and a standard deviation based on a calculated value based on the detected vibration of the engine; and subtracting a product of the standard deviation and a coefficient from the median value to calculate a magnitude of mechanical vibration specific to the engine. Knocking determination is carried out by comparing a knock magnitude calculated by dividing the magnitude value of the peak magnitude of the detected vibration of the engine by the magnitude of mechanical vibration specific to the engine with a predetermined determination value. Based on the knocking determination result, ignition timing of the engine is controlled.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: August 23, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Koji Aso, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Patent number: 8000884
    Abstract: A device and associated method for controlling ignition timing of an internal combustion engine are provided. By comparing a determination value and knock magnitude, determination of knocking is made, and ignition timing is advanced or retarded. The device includes an operation unit that sets a correction amount of the determination value to a value corresponding to a degree of change of the determination value over time. The operation unit calculates, at a first timing, a first value related to an average value of the determination values; and calculates, at a second timing later than the first timing, a second value related to the average value of the determination values. The degree of change of the determination value is calculated as a difference between the first value and the second value.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: August 16, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Koji Aso, Kenji Kasashima, Rihito Kaneko, Masatomo Yoshihara, Kenji Senda, Yuichi Takemura, Shuhei Oe
  • Publication number: 20110146384
    Abstract: An engine ECU executes operations including: extracting vibration intensities of a plurality of frequency bands from vibration detected by a knock sensor, multiplying the extracted vibration intensity of each frequency band by a weight coefficient and adding the results in correspondence with crank angles to calculate integrated values of every five degrees; calculating a coefficient of correlation based on a result of comparison between a vibration waveform of a frequency band and a knock waveform model prepared in advance; calculating a knock intensity; determining occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity; and determining no occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity.
    Type: Application
    Filed: July 28, 2008
    Publication date: June 23, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Publication number: 20110023805
    Abstract: A variable valve timing control apparatus is provided for an internal combustion engine that has a crankshaft, a camshaft, a hydraulic variable valve timing unit, a lock pin, and a hydraulic control valve. The hydraulic control valve is configured to control oil pressure that actuates the variable valve timing unit and the lock pin. The control apparatus switches a control, based on an operational state, between (a) a variable cam timing (VCT) phase control for controlling the VCT phase to a target phase and (b) a lock pin projection control for allowing the lock pin to project. The control apparatus executes, when an abnormality occurs, a foreign object release control for changing a control amount of the hydraulic control valve based on a predetermined pattern, wherein the control apparatus changes the predetermined pattern depending on the abnormality in the execution of the foreign object release control.
    Type: Application
    Filed: July 20, 2010
    Publication date: February 3, 2011
    Applicant: DENSO CORPORATION
    Inventor: Yuichi TAKEMURA
  • Publication number: 20110023804
    Abstract: A variable valve timing control apparatus for an engine includes a hydraulic variable valve timing unit and an oil pressure control device. The variable valve timing unit has a plurality of control ranges and an ambiguity range. The apparatus learns a hold control amount for each of the plurality of control ranges when a predetermined condition is satisfied, and the hold control amount is required to control the oil pressure control device to maintain the actual VCT phase. When the target VCT phase is positioned in the ambiguity range, if a difference between the actual and target VCT phases is stably greater than a predetermined value, the apparatus switches the presently-used hold control amount learning value of one control range into the learning value for the other control range in order to compute the VCT control amount.
    Type: Application
    Filed: July 20, 2010
    Publication date: February 3, 2011
    Applicant: DENSO CORPORATION
    Inventor: Yuichi TAKEMURA
  • Patent number: 7874200
    Abstract: An engine ECU executes a program including the steps of: detecting a vibration corresponding to a first radial resonance mode by using a band-pass filter, from vibrations sensed by an in-cylinder pressure sensor provided at an upper central portion of the cylinder; calculating knock intensity N based on a result of comparison between the detected waveform and a knock waveform model prepared in advance as a vibration waveform when knocking occurs; determining that knocking occurred when the knock intensity N is larger than a predetermined reference value; and determining that knocking has not occurred when the knock intensity N is not larger than the predetermined reference value.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: January 25, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Shuhei Oe, Kiyoshi Iwade, Nobuyuki Murate, Rihito Kaneko, Yuichi Takemura, Shigeru Kamio
  • Publication number: 20100305835
    Abstract: A variable valve timing control apparatus for an internal combustion engine having a crankshaft and a camshaft, the variable valve timing control apparatus including a hydraulic variable valve timing device, an intermediate lock mechanism, and an oil pressure control device. The control apparatus learns an intermediate lock position to obtain a learning value of the intermediate lock position when the intermediate lock mechanism locks the VCT phase at the intermediate lock position. The control apparatus computes an actual VCT phase based on the learning value of the intermediate lock position. The control apparatus computes a target VCT phase in accordance with an operational condition of the engine based on the learning value of the intermediate lock position. The control apparatus controls a control amount of the oil pressure control device such that the actual VCT phase becomes the target VCT phase.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Applicant: DENSO CORPORATION
    Inventors: Masaomi Inoue, Yuichi Takemura
  • Publication number: 20100288215
    Abstract: In a variable valve timing control apparatus, a hydraulic variable valve timing device adjusts valve timing by changing a VCT phase. In a lock mode, the lock pin is allowed to be displaced in a lock direction for locking the VCT phase, and the VCT phase is slightly shifted in a lock-mode VCT phase shift direction corresponding to one of an advance direction and a retard direction. A lock control unit shifts the VCT phase in a direction opposite from the VCT phase shift direction if the VCT phase is located on a lock-mode VCT phase shift direction side of the intermediate lock position when the engine becomes equal to or less than a first rotational speed, and otherwise the lock control unit allows the lock pin to be displaced in the lock direction.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 18, 2010
    Applicant: DENSO CORPORATION
    Inventors: Yuichi TAKEMURA, Minoru WADA
  • Publication number: 20100269772
    Abstract: A variable valve timing control apparatus adjusts the rotation phase (VCT phase) of an engine camshaft by selectively supplying oil to an advancement chamber and a retardation chamber, and includes a lock pin which is controlled for being moveable to a first position, in which the rotation phase is adjustable, and a second position, in which the camshaft is locked at a specific rotation phase. When the lock pin is displaced from the first position, oil becomes enabled to pass between the advancement chamber and retardation chamber, to thereby enabling the rotation phase to be changed to the specific rotation phase by supplying oil to an appropriate one of the advancement chamber and a retardation chamber, for initiating locking.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 28, 2010
    Applicant: DENSO CORPORATION
    Inventors: Yuichi TAKEMURA, Minoru Wada
  • Publication number: 20100212634
    Abstract: An engine ECU executes a program that includes the steps of: calculating (S204) a median value V(50) and a standard deviation s based on a calculated magnitude value LOG(V); and subtracting (S206) a product of the standard deviation s and a coefficient U(3) from the median value V(50) to calculate BGL. Knocking determination is carried out by comparing a knock magnitude N calculated by dividing the magnitude value LOG(P) by the BGL with a predetermined determination value V(VK). Based on the knocking determination result, ignition timing of the engine is controlled.
    Type: Application
    Filed: December 4, 2006
    Publication date: August 26, 2010
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION, NIPPON SOKEN, INC.
    Inventors: Masatomo Yoshihara, Kenji Kasashima, Rihito Kaneko, Koji Aso, Kenji Senda, Yuichi Takemura, Shuhei Oe