Patents by Inventor Yuichi Tsukaguchi

Yuichi Tsukaguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11491537
    Abstract: In a sliding gate, a flow path vertical angle a between a flow path axial direction and a vertical downstream direction in a flow path hole in each plate is 5° or more and 75° or less, and a flow path axial direction projected on sliding surface in which the flow path axial direction is projected on a sliding surface differs between the plates and is changed clockwise or counterclockwise toward a downstream side. Then, molten metal forms a turning flow in the flow path hole of the sliding gate. Furthermore, the molten metal also forms a turning flow in a ladle shroud on the downstream side of the sliding gate.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: November 8, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventor: Yuichi Tsukaguchi
  • Patent number: 11440085
    Abstract: This mold equipment is mold equipment provided with a mold, an electromagnetic brake device, and a control device. An immersion nozzle is provided with a pair of discharge holes of molten metal, the electromagnetic brake device is provided with an iron core including a pair of teeth and coils wound around the respective teeth, the coils on one side are connected in series in a first circuit, the coils on the other side are connected in series in a second circuit, and the control device is able to independently control voltage and current applied to each of the first and second circuits for each circuit, detects a drift of a discharge flow between the pair of discharge holes on the basis of the voltage applied to the coils in the first circuit and the voltage applied to the coils in the second circuit, and controls the current flowing through the first circuit and the current flowing through the second circuit on the basis of a detection result.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: September 13, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Nobuhiro Okada, Shintaro Oga, Yuichi Tsukaguchi
  • Patent number: 11027331
    Abstract: A molding facility in continuous casting enabling the quality of the cast slab to be achieved stably even if improving the productivity, the molding facility provided with a mold for continuous casting use, a first water box and second water box storing cooling water for cooling the mold, an electromagnetic stirring device imparting to molten metal in the mold an electromagnetic force causing a swirling flow to be generated in a horizontal plane, and an electromagnetic brake device imparting to a discharge flow of molten metal to an inside of the mold from a submerged nozzle an electromagnetic force in a direction braking the discharge flow, the first water box, the electromagnetic stirring device, the electromagnetic brake device, and the second water box being placed in that order from above to below at an outside surface of a long side mold plate of the mold so as to fit between a top end and bottom end of the long side mold plate, a core height H1 of the electromagnetic stirring device and a core height H
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: June 8, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Nobuhiro Okada, Shintaro Oga, Yuichi Tsukaguchi
  • Publication number: 20210046542
    Abstract: In a sliding gate, a flow path vertical angle a between a flow path axial direction and a vertical downstream direction in a flow path hole in each plate is 5° or more and 75° or less, and a flow path axial direction projected on sliding surface in which the flow path axial direction is projected on a sliding surface differs between the plates and is changed clockwise or counterclockwise toward a downstream side. Then, molten metal forms a turning flow in the flow path hole of the sliding gate. Furthermore, the molten metal also forms a turning flow in a ladle shroud on the downstream side of the sliding gate.
    Type: Application
    Filed: April 10, 2019
    Publication date: February 18, 2021
    Applicant: NIPPON STEEL CORPORATION
    Inventor: Yuichi TSUKAGUCHI
  • Publication number: 20210023610
    Abstract: This mold equipment is mold equipment provided with a mold, an electromagnetic brake device, and a control device. An immersion nozzle is provided with a pair of discharge holes of molten metal, the electromagnetic brake device is provided with an iron core including a pair of teeth and coils wound around the respective teeth, the coils on one side are connected in series in a first circuit, the coils on the other side are connected in series in a second circuit, and the control device is able to independently control voltage and current applied to each of the first and second circuits for each circuit, detects a drift of a discharge flow between the pair of discharge holes on the basis of the voltage applied to the coils in the first circuit and the voltage applied to the coils in the second circuit, and controls the current flowing through the first circuit and the current flowing through the second circuit on the basis of a detection result.
    Type: Application
    Filed: June 19, 2019
    Publication date: January 28, 2021
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Nobuhiro OKADA, Shintaro OGA, Yuichi TSUKAGUCHI
  • Publication number: 20200331057
    Abstract: A molding facility in continuous casting enabling the quality of the cast slab to be achieved stably even if improving the productivity, the molding facility provided with a mold for continuous casting use, a first water box and second water box storing cooling water for cooling the mold, an electromagnetic stirring device imparting to molten metal in the mold an electromagnetic force causing a swirling flow to be generated in a horizontal plane, and an electromagnetic brake device imparting to a discharge flow of molten metal to an inside of the mold from a submerged nozzle an electromagnetic force in a direction braking the discharge flow, the first water box, the electromagnetic stirring device, the electromagnetic brake device, and the second water box being placed in that order from above to below at an outside surface of a long side mold plate of the mold so as to fit between a top end and bottom end of the long side mold plate, a core height H1 of the electromagnetic stirring device and a core height H
    Type: Application
    Filed: February 25, 2019
    Publication date: October 22, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Nobuhiro OKADA, Shintaro OGA, Yuichi TSUKAGUCHI
  • Patent number: 8397792
    Abstract: In a mold for continuously casting a round billet with a curved type continuous casting apparatus, assuming that D0 (m) is an inner diameter at a lower mold edge and R0 (m) is a curvature radius of an outer curvature side at the lower mold edge, when a rate of change Tp (%/m) in mold inner diameter per unit length along a casting direction is expressed by Formula 1, and when a rate of change Rp (%/m) in curvature radius of an outer curvature side per unit length along the casting direction is expressed by Formula 2, the rate of change Tp in mold inner diameter and the rate of change Rp in curvature radius satisfy a relationship expressed by Formula 3; Tp=(1/D0)×(dD/dx)×100(%/m)??Formula 1 Rp=(1/R0)×(dR/dx)×100(%/m)??Formula 2 where D in Formula 1 is a mold inner diameter at a distance x away from an upper mold edge and R in Formula 2 is a curvature radius of the outer curvature side at the distance x, Rp=(Tp/2)×(D0/R0)??Formula 3 Uniform and good contact is obtained between the billet and a mold inner pe
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: March 19, 2013
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masayuki Kawamoto, Yuichi Tsukaguchi, Masahito Hanao, Atsushi Hirata, Hiroshi Hayashi, Manabu Adachi
  • Publication number: 20120255700
    Abstract: In a mold for casting a billet with a curved type continuous casting apparatus, D0 (m) is an inner diameter at a lower mold edge and R0 (m) is a curvature radius of an outer curvature side at the lower mold edge. When a rate of change Tp (%/m) in mold inner diameter per unit length along a casting direction is Tp=(1/D0)×(dD/dx)×100 (%/m), and when a rate of change Rp (%/m) in curvature radius of an outer curvature side per unit length along the casting direction is Rp=(1/R0)×(dR/dx)×100 (%/m), the rate of change Tp in mold inner diameter and the rate of change Rp in curvature radius satisfy a relationship expressed Rp=(Tp/2)×(D0/R0), where D is a mold inner diameter at a distance x away from an upper mold edge and R in Formula 2 is a curvature radius of the outer curvature side at the distance x.
    Type: Application
    Filed: June 21, 2012
    Publication date: October 11, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Masayuki KAWAMOTO, Yuichi TSUKAGUCHI, Masahito HANAO, Atsuhi HIRATA, Hiroshi HAYASHI, Manabu ADACHI
  • Patent number: 8251129
    Abstract: In an operation of continuous casting of steel grade such as aluminum-killed steel where a nozzle clogging phenomenon is particularly likely to occur, it is intended to prevent adhesion of inclusions (typically, Al2O3) on a nozzle used in the casting operation, and clogging of the nozzle due to the inclusions. A refractory material 10 is arranged to define a part or an entirety of a molten steel-contacting surface of a continuous casting nozzle, wherein the refractory material 10 contains: a CaO component in an amount of 0.5 mass % or more; one or both of B2O3 and R2O (R is one selected from the group consisting of Na, K and Li) in an amount of 0.5 mass % or more; Al2O3 in an amount of 50 mass % or more; and free carbon in an amount of 8.0 to 34.5 mass %, and wherein a total amount of CaO, B2O3 and R2O is in the range of 1.0 to 15.0 mass %, and a mass ratio of CaO/(B2O3+R2O) is in the range of 0.1 to 3.0.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: August 28, 2012
    Assignee: Krosakiharima Corporation
    Inventors: Katsumi Morikawa, Akinari Sasaki, Hiroshi Otsuka, Yuichi Tsukaguchi
  • Patent number: 8225843
    Abstract: In a mold for casting a billet with a curved type continuous casting apparatus, D0 (m) is an inner diameter at a lower mold edge and R0 (m) is a curvature radius of an outer curvature side at the lower mold edge. When a rate of change Tp (%/m) in mold inner diameter per unit length along a casting direction is Tp=(1/D0)×(dD/dx)×100 (%/m), and when a rate of change Rp (%/m) in curvature radius of an outer curvature side per unit length along the casting direction is Rp=(1/R0)×(dR/dx)×100 (%/m), the rate of change Tp in mold inner diameter and the rate of change Rp in curvature radius satisfy a relationship expressed Rp=(Tp/2)×(D0/R0), where D is a mold inner diameter at a distance x away from an upper mold edge and R in Formula 2 is a curvature radius of the outer curvature side at the distance x.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: July 24, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masayuki Kawamoto, Yuichi Tsukaguchi, Masahito Hanao, Atsushi Hirata, Hiroshi Hayashi, Manabu Adachi
  • Publication number: 20110277951
    Abstract: [OBJECT] In an operation of continuous casting of steel grade such as aluminum-killed steel where a nozzle clogging phenomenon is particularly likely to occur, it is intended to prevent adhesion of inclusions (typically, Al2O3) on a nozzle used in the casting operation, and clogging of the nozzle due to the inclusions [SOLUTION] A refractory material 10 is arranged to define a part or an entirety of a molten steel-contacting surface of a continuous casting nozzle, wherein the refractory material 10 contains: a CaO component in an amount of 0.5 mass % or more; one or both of B2O3 and R2O (R is one selected from the group consisting of Na, K and Li) in an amount of 0.5 mass % or more; Al2O3 in an amount of 50 mass % or more; and free carbon in an amount of 8.0 to 34.5 mass %, and wherein a total amount of CaO, B2O3 and R2O is in the range of 1.0 to 15.0 mass %, and a mass ratio of CaO/(B2O3+R2O) is in the range of 0.1 to 3.0.
    Type: Application
    Filed: May 13, 2010
    Publication date: November 17, 2011
    Applicant: KROSAKIHARIMA CORPORATION
    Inventors: Katsumi MORIKAWA, Akinari SASAKI, Hiroshi OTSUKA, Yuichi Tsukaguchi
  • Patent number: 7913745
    Abstract: A method for continuously casting a billet with a small cross section in which a curved type or vertical type continuous casting machine is used while oscillating the mold upward and downward is characterized in that the casting machine is provided with a mechanism for withdrawing speed oscillation. The mechanism has structural play in the directions of driving and reverse driving in such a manner that the amount of a play-incurred displacement from the neutral position of the structural play in the direction of billet driving or reverse driving is ±2 to ±30 mm in the direction of driving on the pinch roll circumferential length equivalent basis. The mechanism produces a returning force toward the neutral position and operational parameters such as the billet length, the specific amount of secondary cooling water, the casting speed as well as the oscillation amplitude and frequency are optimized.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: March 29, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yuichi Tsukaguchi, Masayuki Kawamoto, Masahito Hanao, Atsushi Hirata, Hiroshi Hayashi, Manabu Adachi
  • Patent number: 7909086
    Abstract: Continuously casting a billet with a small cross section by pouring molten steel into a mold using a cylindrical immersion nozzle is characterized by measuring the molten steel level in the mold using an eddy current sensor. The level is controlled based on the thus-measured value, motion of steel in the mold is adjusted by electromagnetic stirring, a cooling zone during the final period of solidification is disposed within a certain region ranging from the meniscus to the specific site, and casting speed is adjusted so that the region in which the solid phase ratio at the billet center is 0.3-0.99 may be included in the cooling zone during the final period of solidification. The secondary cooling water amount and the billet surface temperature at the entrance to the cooling zone the density of cooling water in the cooling zone during the final period of solidification are optimized.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: March 22, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yuichi Tsukaguchi, Masayuki Kawamoto, Masahito Hanao, Atsushi Hirata, Hiroshi Hayashi
  • Publication number: 20100032129
    Abstract: A method for continuously casting a billet with a small cross section in which a curved type or vertical type continuous casting machine is used while oscillating the mold upward and downward is characterized in that the casting machine is provided with a mechanism for withdrawing speed oscillation. The mechanism has structural play in the directions of driving and reverse driving in such a manner that the amount of a play-incurred displacement from the neutral position of the structural play in the direction of billet driving or reverse driving is ±2 to ±30 mm in the direction of driving on the pinch roll circumferential length equivalent basis. The mechanism produces a returning force toward the neutral position and operational parameters such as the billet length, the specific amount of secondary cooling water, the casting speed as well as the oscillation amplitude and frequency are optimized.
    Type: Application
    Filed: October 15, 2009
    Publication date: February 11, 2010
    Inventors: Yuichi Tsukaguchi, Masayuki Kawamoto, Masahito Hanao, Atsushi Hirata, Hiroshi Hayashi, Manabu Adachi
  • Publication number: 20100032127
    Abstract: In a mold for casting a billet with a curved type continuous casting apparatus, D0 (m) is an inner diameter at a lower mold edge and R0 (m) is a curvature radius of an outer curvature side at the lower mold edge. When a rate of change Tp (%/m) in mold inner diameter per unit length along a casting direction is Tp=(1/D0)×(dD/dx)×100 (%/m), and when a rate of change Rp (%/m) in curvature radius of an outer curvature side per unit length along the casting direction is Rp=(1/R0)×(dR/dx)×100 (%/m), the rate of change Tp in mold inner diameter and the rate of change Rp in curvature radius satisfy a relationship expressed Rp=(Tp/2)×(D0/R0), where D is a mold inner diameter at a distance x away from an upper mold edge and R in Formula 2 is a curvature radius of the outer curvature side at the distance x.
    Type: Application
    Filed: October 15, 2009
    Publication date: February 11, 2010
    Inventors: Masayuki Kawamoto, Yuichi Tsukaguchi, Masahito Hanao, Atsushi Hirata, Hiroshi Hayashi, Manabu Adachi
  • Publication number: 20100025004
    Abstract: Continuously casting a billet with a small cross section by pouring molten steel into a mold using a cylindrical immersion nozzle is characterized by measuring the molten steel level in the mold using an eddy current sensor. The level is controlled based on the thus-measured value, motion of steel in the mold is adjusted by electromagnetic stirring, a cooling zone during the final period of solidification is disposed within a certain region ranging from the meniscus to the specific site, and casting speed is adjusted so that the region in which the solid phase ratio at the billet center is 0.3-0.99 may be included in the cooling zone during the final period of solidification. The secondary cooling water amount and the billet surface temperature at the entrance to the cooling zone the density of cooling water in the cooling zone during the final period of solidification are optimized.
    Type: Application
    Filed: October 15, 2009
    Publication date: February 4, 2010
    Inventors: Yuichi Tsukaguchi, Masayuki Kawamoto, Masahito Hanao, Atsushi Hirata, Hiroshi Hayashi
  • Publication number: 20070158884
    Abstract: An immersion nozzle for continuous casting which enables improvement in quality of a slab surface and increase in the efficiency of casting by suppressing the self-excited oscillation of a flow in a mold without using a complicated mechanism such as a swirl flow generating immersion nozzle is to be provided. A first immersion nozzle for continuous casting is a nozzle comprising a cylindrical body and a pair of outlet ports formed to face each other in a side wall in the vicinity of a bottom part of the cylindrical body, wherein a ridge-shaped projection extending parallel with the discharge direction projected on a cross section of the nozzle is formed on an inner surface of the bottom part, which is formed in a waterfall basin-like recessed shape having a maximum depth of 5 mm to 50 mm.
    Type: Application
    Filed: December 22, 2004
    Publication date: July 12, 2007
    Inventor: Yuichi Tsukaguchi