Patents by Inventor Yuji Ishiwari

Yuji Ishiwari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230043008
    Abstract: Provided is a ring-rolled member manufacturing method enabling stabilization of the attitude of the ring material without generating a defect and the like in the resulting ring-rolled member even when the main roll of the ring-rolling device is provided with the flange portions positioned on upper and lower sides of the ring material. A ring-rolling device used in the ring-rolled member manufacturing method of the present invention is provided with a main roll 10 and a mandrel roll 20. An outer peripheral face of the main roll includes a recessed portion 12 to accommodate the ring material and an outer peripheral face of the mandrel roll 20, an upper flange portion 11 positioned on an upper side thereof, and a lower flange portion 13 positioned on a lower side thereof.
    Type: Application
    Filed: December 16, 2020
    Publication date: February 9, 2023
    Inventors: Kazuya MUSHA, Jun OHSONE, Yuji ISHIWARI, Momoko OJI
  • Patent number: 11135642
    Abstract: A method for manufacturing a ring-rolled product, which manufactures the ring-rolled product from a ring material, includes a step of rolling the ring material, which has an operation of rolling the ring material from both inner and outer circumferential sides thereof between a mandrel roll and a main roll in a state of rotating the ring material toward one side in a circumferential direction thereof, and induction-heating the ring material by induction heating elements. An induction heating element is disposed on only an outer circumferential side of the ring material or is disposed on each of both the inner and outer circumferential sides in a region immediately before the rolling, or an inclined portion is provided in an outer-peripheral edge portion of a coil in the induction heating element.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: October 5, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Takuya Murai, Takanori Matsui, Yuji Ishiwari, Tomoyoshi Kiwake
  • Patent number: 11077481
    Abstract: A method for manufacturing a ring-rolled product forms the ring-rolled product from a ring material by using a mandrel roll and a main roll. The mandrel roll and the main roll are configured so as to contact inner and outer circumferential surfaces of the ring material, respectively, and are configured so as to press the ring material in a radial direction thereof in a state in which the ring material is rotated in a circumferential direction thereof. The method includes a step of rolling the ring material that includes an operation of induction-heating the main roll by at least one induction heating element and rolling the ring material between the mandrel roll and the main roll, which is induction-heated.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: August 3, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Takuya Murai, Takanori Matsui, Yuji Ishiwari, Tomoyoshi Kiwake
  • Publication number: 20200306818
    Abstract: A method for manufacturing a ring-rolled product forms the ring-rolled product from a ring material by using a mandrel roll and a main roll. The mandrel roll and the main roll are configured so as to contact inner and outer circumferential surfaces of the ring material, respectively, and are configured so as to press the ring material in a radial direction thereof in a state in which the ring material is rotated in a circumferential direction thereof. The method includes a step of rolling the ring material that includes an operation of induction-heating the main roll by at least one induction heating element and rolling the ring material between the mandrel roll and the main roll, which is induction-heated.
    Type: Application
    Filed: December 1, 2016
    Publication date: October 1, 2020
    Inventors: Takuya MURAI, Takanori MATSUI, Yuji ISHIWARI, Tomoyoshi KIWAKE
  • Publication number: 20200306817
    Abstract: A method for manufacturing a ring-rolled product, which manufactures the ring-rolled product from a ring material, includes a step of rolling the ring material, which has an operation of rolling the ring material from both inner and outer circumferential sides thereof between a mandrel roll and a main roll in a state of rotating the ring material toward one side in a circumferential direction thereof, and induction-heating the ring material by induction heating elements. An induction heating element is disposed on only an outer circumferential side of the ring material or is disposed on each of both the inner and outer circumferential sides in a region immediately before the rolling, or an inclined portion is provided in an outer-peripheral edge portion of a coil in the induction heating element.
    Type: Application
    Filed: December 1, 2016
    Publication date: October 1, 2020
    Inventors: Takuya MURAI, Takanori MATSUI, Yuji ISHIWARI, Tomoyoshi KIWAKE
  • Publication number: 20170297080
    Abstract: A ring molded article manufacturing method capable of reliably and efficiently producing a ring molded article in which dead metal regions are reduced, is provided. In the present invention, a material is processed by first forging so as to be shaped in a shape including a bottom which is formed in a substantially disk shape, and a peripheral wall which is inclined to a direction from a center of the bottom toward an outer periphery thereof, in a direction from the outer periphery of the bottom toward one side in a direction of a center axis of the bottom, the bottom of a first forged article obtained by the first forging is drilled, a drilled article obtained by the drilling is ring-rolled, a ring material obtained by the ring rolling is placed inside two molds, the ring material is then processed by second forging so as to be pressed by the two molds in a direction of a center axis of the ring material, and the ring molded article is thus produced.
    Type: Application
    Filed: August 27, 2015
    Publication date: October 19, 2017
    Inventors: Yuji ISHIWARI, Jun OHSONE
  • Patent number: 9592547
    Abstract: A method of manufacturing an annular material includes: a forging process of making a discoid forged material by forging an alloy material; and a ring rolling process of making an annular material by performing ring rolling on an annular intermediate made by forming a through-hole in the forged material. In the forging process, hot forging which achieves an absolute value ??1 of a strain in a circumferential direction of the forged material that is greater than or equal to 0.3, an absolute value ?h of a strain in a height direction of the forged material that is greater than or equal to 0.3, and a ratio ?h/??1 between the absolute values of the strains that is in a range of 0.4 to 2.5 is performed at least two or more times.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 14, 2017
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hideo Takizawa, Yuji Ishiwari, Hiroaki Kikuchi, Jun Ohsone
  • Publication number: 20140157851
    Abstract: A method of manufacturing an annular material includes: a forging process of making a discoid forged material by forging an alloy material; and a ring rolling process of making an annular material by performing ring rolling on an annular intermediate made by forming a through-hole in the forged material. In the forging process, hot forging which achieves an absolute value ??1 of a strain in a circumferential direction of the forged material that is greater than or equal to 0.3, an absolute value ?h of a strain in a height direction of the forged material that is greater than or equal to 0.3, and a ratio ?h/??1 between the absolute values of the strains that is in a range of 0.4 to 2.5 is performed at least two or more times.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hideo Takizawa, Yuji Ishiwari, Hiroaki Kikuchi, Jun Ohsone
  • Patent number: 8689597
    Abstract: This ring rolling mill includes a main roll and a mandrel that are brought close to or separated from each other, and roll a peripheral portion of a ring-shaped body in a radial direction of the ring-shaped body while the ring-shaped body is rotated along its peripheral direction in a state where the peripheral portion of the ring-shaped body is pinched in the radial direction between an outer peripheral surface of the main roll, and an outer peripheral surface of the mandrel. This ring rolling mill further includes a mechanism which inclines and supports the mandrel with respect to the rotation axis of the main roll such that the gap between the outer peripheral surface of the mandrel and the outer peripheral surface of the main roll differs on one side and on the other side as seen in a direction along the rotation axis of the main roll.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: April 8, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Shimpei Hirose, Yuji Ishiwari, Hiroaki Kikuchi, Hideo Takizawa
  • Patent number: 8365564
    Abstract: This ring rolling mill includes a main roll and a mandrel provided so as to be capable of being brought close to or separated from each other, and rolling a peripheral portion of a ring-shaped body in a radial direction of the ring-shaped body while the ring-shaped body is rotated along its peripheral direction in a state where the peripheral portion of the ring-shaped body is pinched in the radial direction between an outer peripheral surface of the main roll which is rotationally driven, and an outer peripheral surface of the mandrel which is rotatable. This ring rolling mill further includes a mandrel inclining/supporting mechanism which inclines and supports the mandrel with respect to the axis of rotation of the main roll such that the gap between the outer peripheral surface of the mandrel and the outer peripheral surface of the main roll differs on one side and on the other side as seen in a direction along the axis of rotation of the main roll.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: February 5, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventors: Shimpei Hirose, Yuji Ishiwari, Hiroaki Kikuchi, Hideo Takizawa
  • Patent number: 8187532
    Abstract: This ring-shaped disk for a gas turbine includes a ring-shaped disk material consisting of a Ni-based alloy, wherein the Ni-based alloy has a composition that includes, in terms of percent by mass, Ni: 50.00 to 55.00%, Cr: 17.0 to 21.0%, Nb: 4.75 to 5.60%, Mo: 2.8 to 3.3%, Ti: 0.65 to 1.15%, Al: 0.20 to 0.80%, and C: 0.01 to 0.08%, with the balance being Fe and inevitable impurities, and has a microstructure in which ? phase particles are distributed in a matrix thereof, and wherein, in the microstructure, flattened ? phase particles of which maximum length directions are oriented at angles within a range of 60 to 120° with respect to a radial direction of the ring-shaped disk material are present in an amount of 60% or more of a total amount of the ? phase particles distributed in the matrix.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: May 29, 2012
    Assignee: MMC Superalloy Corporation
    Inventors: Jun Ohsone, Akira Mitsuhashi, Takanori Matsui, Yuji Ishiwari
  • Publication number: 20110158844
    Abstract: This ring-shaped disk for a gas turbine includes a ring-shaped disk material consisting of a Ni-based alloy, wherein the Ni-based alloy has a composition that includes, in terms of percent by mass, Ni: 50.00 to 55.00%, Cr: 17.0 to 21.0%, Nb: 4.75 to 5.60%, Mo: 2.8 to 3.3%, Ti: 0.65 to 1.15%, Al: 0.20 to 0.80%, and C: 0.01 to 0.08%, with the balance being Fe and inevitable impurities, and has a microstructure in which ? phase particles are distributed in a matrix thereof, and wherein, in the microstructure, flattened ? phase particles of which maximum length directions are oriented at angles within a range of 60 to 120° with respect to a radial direction of the ring-shaped disk material are present in an amount of 60% or more of a total amount of the ? phase particles distributed in the matrix.
    Type: Application
    Filed: May 8, 2009
    Publication date: June 30, 2011
    Inventors: Jun Ohsone, Akira Mitsuhashi, Takanori Matsui, Yuji Ishiwari
  • Publication number: 20100236311
    Abstract: This ring rolling mill includes a main roll and a mandrel provided so as to be capable of being brought close to or separated from each other, and rolling a peripheral portion of a ring-shaped body in a radial direction of the ring-shaped body while the ring-shaped body is rotated along its peripheral direction in a state where the peripheral portion of the ring-shaped body is pinched in the radial direction between an outer peripheral surface of the main roll which is rotationally driven, and an outer peripheral surface of the mandrel which is rotatable. This ring rolling mill further includes a mandrel inclining/supporting mechanism which inclines and supports the mandrel with respect to the axis of rotation of the main roll such that the gap between the outer peripheral surface of the mandrel and the outer peripheral surface of the main roll differs on one side and on the other side as seen in a direction along the axis of rotation of the main roll.
    Type: Application
    Filed: March 28, 2007
    Publication date: September 23, 2010
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Shimpei Hirose, Yuji Ishiwari, Hiroaki Kikuchi, Hideo Takizawa
  • Patent number: 6540828
    Abstract: A simple and inexpensive method and apparatus for producing crystalline silicon comprising the steps of melting silicon in a mold, then cooling the bottom of the mold is cooled to create a positive temperature gradient from the bottom of the mold upward, thereby causing the molten silicon to crystallize from the inner bottom of the mold upward so that the solid-liquid phase boundary, separating the crystallized silicon from the molten silicon, moves upward as the molten silicon crystallizes. As the silicon crystallizes, an inert gas is blown onto the surface of the molten silicon from a position above the surface of the molten silicon, thereby vibrating the surface of the molten silicon in such a manner that cavities are formed in the surface of the molten silicon.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: April 1, 2003
    Assignee: Mitsubishi Materials Corporation
    Inventors: Saburo Wakita, Yoshinobu Nakada, Junichi Sasaki, Yuji Ishiwari
  • Publication number: 20020139297
    Abstract: A simple and inexpensive method and apparatus for producing crystalline silicon comprising the steps of melting silicon in a mold, then cooling the bottom of the mold is cooled to create a positive temperature gradient from the bottom of the mold upward, thereby causing the molten silicon to crystallize from the inner bottom of the mold upward so that the solid-liquid phase boundary, separating the crystallized silicon from the molten silicon, moves upward as the molten silicon crystallizes. As the silicon crystallizes, an inert gas is blown onto the surface of the molten silicon from a position above the surface of the molten silicon, thereby vibrating the surface of the molten silicon in such a manner that cavities are formed in the surface of the molten silicon.
    Type: Application
    Filed: March 25, 2002
    Publication date: October 3, 2002
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Saburo Wakita, Yoshinobu Nakada, Junichi Sasaki, Yuji Ishiwari
  • Patent number: 6383285
    Abstract: A simple and inexpensive method and apparatus for producing crystalline silicon comprising the steps of melting silicon in a mold, then cooling the bottom of the mold is cooled to create a positive temperature gradient from the bottom of the mold upward, thereby causing the molten silicon to crystallize from the inner bottom of the mold upward so that the solid-liquid phase boundary, separating the crystallized silicon from the molten silicon, moves upward as the molten silicon crystallizes. As the silicon crystallizes, an inert gas is blown onto the surface of the molten silicon from a position above the surface of the molten silicon, thereby vibrating the surface of the molten silicon in such a manner that cavities are formed in the surface of the molten silicon.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: May 7, 2002
    Assignee: Mitsubishi Materials Corporation
    Inventors: Saburo Wakita, Yoshinobu Nakada, Junichi Sasaki, Yuji Ishiwari