Patents by Inventor Yuji Katsumata

Yuji Katsumata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10710463
    Abstract: The control device for the electric vehicle determines whether or not the starting operation of the vehicle has been performed by the driver, calculates the disturbance torque estimated value Td necessary for maintaining the vehicle stop state corresponding to the disturbance acting on the vehicle, and performs a control such that the driving torque of the motor converges to the disturbance torque estimated value Td when the vehicle is determined to be just before stop of the vehicle during running or determined to have undergone the starting operation. Then, the control device for the electric vehicle controls the responsiveness of the driving torque to the disturbance acting on the vehicle, and increases the responsiveness of the driving torque of the motor compared with the responsiveness of the driving torque just before stop of the vehicle when the starting operation is determined to have been performed.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: July 14, 2020
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Akira Sawada, Ken Itou, Takashi Nakajima, Yuji Katsumata, Hiroyuki Komatsu
  • Patent number: 10563768
    Abstract: An internal combustion engine includes an oil seal mounted at a crankshaft of an internal combustion engine body to restrain leakage of oil to an outside of the internal combustion engine, an oil seal fixing member fixed to the internal combustion engine body to fix the oil seal to the internal combustion engine body, and a cover member assembled on a lateral surface portion of the internal combustion engine body in a direction in which the crankshaft extends, the cover member covering the oil seal fixing member from a side opposite to the internal combustion engine body, the oil seal fixing member being fixed to the internal combustion engine body at a fixing position which is provided at an inner side than an outer edge portion of the cover member fastened to the internal combustion engine body.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: February 18, 2020
    Assignee: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Ichiro Kawano, Yuji Iwata, Akihiro Katsumata
  • Patent number: 10266069
    Abstract: A control device for electric motor vehicle uses the motor as the traveling driving source. The control device for electric motor vehicle is configured to decelerate by the regenerative braking force from the motor. The control device for electric motor vehicle is configured to detect the amount of the accelerator operation, detect the motor rotation speed proportionate to the traveling speed of the electric motor vehicle, and calculate the motor rotation speed estimated value according to the state of the electric motor vehicle. Additionally, the control device for electric motor vehicle is configured to detect or estimate the resistance component unrelated to the gradient from the vehicle state and correct the motor rotation speed estimated value according to the resistance component.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: April 23, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Akira Sawada, Ken Ito, Takashi Nakajima, Yuji Katsumata, Hiroyuki Komatsu
  • Patent number: 10195945
    Abstract: A control device is provided for an electric vehicle that generates a braking force corresponding to an opening degree of an accelerator pedal to decelerate the electric vehicle. The control device for the electric vehicle includes a motor configured to generate a driving force or a regenerative braking force of the electric vehicle, a friction braking unit configured to generate a friction braking force, and a controller configured to control at least one of the motor and the friction braking unit corresponding to the opening degree of the accelerator pedal. The controller determines whether all of regenerative electric power generated by the motor is consumed in the electric vehicle when the motor is caused to perform a regenerative braking. The controller causes the motor to perform the regenerative braking when the regenerative electric power is determined to be consumed in the electric vehicle.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: February 5, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yoichi Hirakawa, Ken Itou, Yuji Katsumata, Hiroyuki Komatsu
  • Publication number: 20180244157
    Abstract: A control device is provided for an electric vehicle that generates a braking force corresponding to an opening degree of an accelerator pedal to decelerate the electric vehicle. The control device for the electric vehicle includes a motor configured to generate a driving force or a regenerative braking force of the electric vehicle, a friction braking unit configured to generate a friction braking force, and a controller configured to control at least one of the motor and the friction braking unit corresponding to the opening degree of the accelerator pedal. The controller determines whether all of regenerative electric power generated by the motor is consumed in the electric vehicle when the motor is caused to perform a regenerative braking. The controller causes the motor to perform the regenerative braking when the regenerative electric power is determined to be consumed in the electric vehicle.
    Type: Application
    Filed: July 29, 2015
    Publication date: August 30, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yoichi HIRAKAWA, Ken ITOU, Yuji KATSUMATA, Hiroyuki KOMATSU
  • Patent number: 10035430
    Abstract: A control device for electric motor vehicle using the motor as the traveling driving source and configured to decelerate by a regenerative braking force from the motor detects the accelerator operation amount, calculates the disturbance torque estimated value, and detects or estimates the resistance component unrelated to the gradient from the vehicle state. The control device for electric motor vehicle corrects the disturbance torque estimated value according to the detected or estimated resistance component unrelated to the gradient. The motor is controlled on the basis of the motor torque command value. When the accelerator operation amount is equal to or less than the predetermined value and the electric motor vehicle is just before the stop of the vehicle, the motor torque command value converges to the corrected disturbance torque estimated value in conjunction with the reduction of the rotation speed of the motor.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: July 31, 2018
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Akira Sawada, Ken Ito, Takashi Nakajima, Yuji Katsumata, Hiroyuki Komatsu
  • Patent number: 10005433
    Abstract: The wiper-washer control device includes a wiper motor that causes a wiper blade to perform a wiping operation, a washer pump that causes a washer fluid to be sprayed, and a controller that, in cases in which defrosting has been instructed, controls the wiper motor and the washer pump such that a defrosting operation in which the wiping operation and spraying of washer fluid is performed in a predetermined combination.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: June 26, 2018
    Assignee: ASMO CO., LTD.
    Inventors: Shinji Oka, Naoya Mitsuoka, Wataru Uemura, Yuji Katsumata
  • Publication number: 20180154797
    Abstract: The control device for the electric vehicle determines whether or not the starting operation of the vehicle has been performed by the driver, calculates the disturbance torque estimated value Td necessary for maintaining the vehicle stop state corresponding to the disturbance acting on the vehicle, and performs a control such that the driving torque of the motor converges to the disturbance torque estimated value Td when the vehicle is determined to be just before stop of the vehicle during running or determined to have undergone the starting operation. Then, the control device for the electric vehicle controls the responsiveness of the driving torque to the disturbance acting on the vehicle, and increases the responsiveness of the driving torque of the motor compared with the responsiveness of the driving torque just before stop of the vehicle when the starting operation is determined to have been performed.
    Type: Application
    Filed: May 26, 2015
    Publication date: June 7, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Akira SAWADA, Ken ITOU, Takashi NAKAJIMA, Yuji KATSUMATA, Hiroyuki KOMATSU
  • Patent number: 9956960
    Abstract: The device that generates the friction braking force to decelerate the vehicle estimates the disturbance torque acting on the vehicle. When the accelerator operation amount is equal to or less than the predetermined value and the vehicle is just before the stop of the vehicle, the control device for vehicle causes the friction braking amount to converge to the friction braking amount to the value decided on the basis of the disturbance torque estimated value Td in conjunction with the reduction in the motor rotation speed (speed parameter) proportionate to the traveling speed of the vehicle.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: May 1, 2018
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki Komatsu, Ken Ito, Takashi Nakajima, Yuji Katsumata, Akira Sawada
  • Patent number: 9919617
    Abstract: A control device for electric motor vehicle using a motor as a traveling drive source and configured to decelerate by a regenerative braking force of the motor includes a motor torque command value setter configured to set a first torque target value for traveling based on the vehicle information as a motor torque command value for traveling based on the vehicle information before a speed parameter proportional to a traveling speed of an electric motor vehicle becomes equal to or less than a predetermined value, and set a second torque target value for stopping the electric motor vehicle and maintaining a vehicle stopped state as the motor torque command value when the speed parameter becomes equal to or less than the predetermined value, a motor controller configured to control the motor on the basis of the motor torque command value.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: March 20, 2018
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Akira Sawada, Ken Ito, Takashi Nakajima, Yuji Katsumata, Hiroyuki Komatsu
  • Patent number: 9902272
    Abstract: A control device for electric motor vehicle is configured to decelerate by a regenerative braking force of the motor when an accelerator operation amount decreases or becomes zero. The control device detects the accelerator operation amount, calculates a motor torque command value, and controls the motor on the basis of the motor torque command value calculated. The control device detects a speed parameter proportional to a traveling speed and calculates a feedback torque for stopping the vehicle on the basis of the speed parameter detected. The control device also estimates a disturbance torque acting on the motor and converges, as the speed parameter is reduced, the motor torque command value to the disturbance torque on the basis of the feedback torque when the accelerator operation amount decreases or becomes zero and the electric motor vehicle stops shortly. The control device adjusts the feedback torque according to the disturbance torque.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: February 27, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Sawada, Ken Ito, Takashi Nakajima, Yuji Katsumata, Hiroyuki Komatsu
  • Publication number: 20180043792
    Abstract: A control device for electric motor vehicle using the motor as the traveling driving source and configured to decelerate by a regenerative braking force from the motor detects the accelerator operation amount, calculates the disturbance torque estimated value, and detects or estimates the resistance component unrelated to the gradient from the vehicle state. The control device for electric motor vehicle corrects the disturbance torque estimated value according to the detected or estimated resistance component unrelated to the gradient. The motor is controlled on the basis of the motor torque command value. When the accelerator operation amount is equal to or less than the predetermined value and the electric motor vehicle is just before the stop of the vehicle, the motor torque command value converges to the corrected disturbance torque estimated value in conjunction with the reduction of the rotation speed of the motor.
    Type: Application
    Filed: January 26, 2015
    Publication date: February 15, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Akira SAWADA, Ken ITO, Takashi NAKAJIMA, Yuji KATSUMATA, Hiroyuki KOMATSU
  • Publication number: 20180015840
    Abstract: a control device for electric motor vehicle uses the motor as the traveling driving source. The control device for electric motor vehicle is configured to decelerate by the regenerative braking force from the motor. The control device for electric motor vehicle is configured to detect the amount of the accelerator operation, detect the motor rotation speed proportionate to the traveling speed of the electric motor vehicle, and calculate the motor rotation speed estimated value according to the state of the electric motor vehicle. Additionally, the control device for electric motor vehicle is configured to detect or estimate the resistance component unrelated to the gradient from the vehicle state and correct the motor rotation speed estimated value according to the resistance component.
    Type: Application
    Filed: January 26, 2015
    Publication date: January 18, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Akira SAWADA, Ken ITO, Takashi NAKAJIMA, Yuji KATSUMATA, Hiroyuki KOMATSU
  • Publication number: 20180015925
    Abstract: The device that generates the friction braking force to decelerate the vehicle estimates the disturbance torque acting on the vehicle. When the accelerator operation amount is equal to or less than the predetermined value and the vehicle is just before the stop of the vehicle, the control device for vehicle causes the friction braking amount to converge to the friction braking amount to the value decided on the basis of the disturbance torque estimated value Td in conjunction with the reduction in the motor rotation speed (speed parameter) proportionate to the traveling speed of the vehicle.
    Type: Application
    Filed: January 26, 2015
    Publication date: January 18, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki KOMATSU, Ken ITO, Takashi NAKAJIMA, Yuji KATSUMATA, Akira SAWADA
  • Patent number: 9845022
    Abstract: A control device for electric motor vehicle configured to decelerate by a regenerative braking force of the motor detects an accelerator operation amount, calculates a motor torque command value and controls the motor on the basis of the calculated motor torque command value. Further, a speed parameter proportional to a traveling speed is detected, and a feedback torque for stopping the electric motor vehicle is calculated on the basis of the detected speed parameter. Furthermore, the speed parameter is estimated in accordance with a state of the electric motor vehicle, and a feedforward torque is calculated on the basis of the estimated speed parameter. When accelerator operation amount is not larger than a predetermined value and the electric motor vehicle stops shortly, the motor torque command value is converged to zero on the basis of the feedback torque and the feedforward torque with a reduction in the traveling speed.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: December 19, 2017
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroyuki Komatsu, Ken Ito, Takashi Nakajima, Yuji Katsumata, Akira Sawada
  • Publication number: 20170001602
    Abstract: The wiper-washer control device includes a wiper motor that causes a wiper blade to perform a wiping operation, a washer pump that causes a washer fluid to be sprayed, and a controller that, in cases in which defrosting has been instructed, controls the wiper motor and the washer pump such that a defrosting operation in which the wiping operation and spraying of washer fluid is performed in a predetermined combination.
    Type: Application
    Filed: June 28, 2016
    Publication date: January 5, 2017
    Inventors: Shinji OKA, Naoya MITSUOKA, Wataru UEMURA, Yuji KATSUMATA
  • Publication number: 20160347202
    Abstract: A control device for electric motor vehicle using a motor as a traveling drive source and configured to decelerate by a regenerative braking force of the motor includes a motor torque command value setter configured to set a first torque target value for traveling based on the vehicle information as a motor torque command value for traveling based on the vehicle information before a speed parameter proportional to a traveling speed of an electric motor vehicle becomes equal to or less than a predetermined value, and set a second torque target value for stopping the electric motor vehicle and maintaining a vehicle stopped state as the motor torque command value when the speed parameter becomes equal to or less than the predetermined value, a motor controller configured to control the motor on the basis of the motor torque command value.
    Type: Application
    Filed: January 5, 2015
    Publication date: December 1, 2016
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Akira Sawada, Ken Ito, Takashi Nakajima, Yuji Katsumata, Hiroyuki Komatsu
  • Publication number: 20160297303
    Abstract: A control device for electric motor vehicle is configured to decelerate by a regenerative braking force of the motor when an accelerator operation amount decreases or becomes zero. The control device detects the accelerator operation amount, calculates a motor torque command value, and controls the motor on the basis of the motor torque command value calculated. The control device detects a speed parameter proportional to a traveling speed and calculates a feedback torque for stopping the vehicle on the basis of the speed parameter detected. The control device also estimates a disturbance torque acting on the motor and converges, as the speed parameter is reduced, the motor torque command value to the disturbance torque on the basis of the feedback torque when the accelerator operation amount decreases or becomes zero and the electric motor vehicle stops shortly. The control device adjusts the feedback torque according to the disturbance torque.
    Type: Application
    Filed: December 2, 2013
    Publication date: October 13, 2016
    Inventors: Akira SAWADA, Ken ITO, Takashi NAKAJIMA, Yuji KATSUMATA, Hiroyuki KOMATSU
  • Publication number: 20160297321
    Abstract: A control device for electric motor vehicle configured to decelerate by a regenerative braking force of the motor detects an accelerator operation amount, calculates a motor torque command value and controls the motor on the basis of the calculated motor torque command value. Further, a speed parameter proportional to a traveling speed is detected, and a feedback torque for stopping the electric motor vehicle is calculated on the basis of the detected speed parameter. Furthermore, the speed parameter is estimated in accordance with a state of the electric motor vehicle, and a feedforward torque is calculated on the basis of the estimated speed parameter. When accelerator operation amount is not larger than a predetermined value and the electric motor vehicle stops shortly, the motor torque command value is converged to zero on the basis of the feedback torque and the feedforward torque with a reduction in the traveling speed.
    Type: Application
    Filed: November 20, 2014
    Publication date: October 13, 2016
    Inventors: Hiroyuki Komatsu, Ken Ito, Takashi Nakajima, Yuji Katsumata, Akira Sawada
  • Patent number: 9461578
    Abstract: A motor control device of a vehicle includes a motor and a lock mechanism for locking the rotation of vehicle wheels. The motor control device includes a detection device for detecting release of the lock mechanism, a damping control device for suppressing torsional vibration of a drive shaft, and a current control device for controlling current flowing to the motor on the basis of a motor torque command value set by the damping control device. The current control device channels an excitation current for generating a magnetic flux in the motor on the basis of the detection result of the detection device.
    Type: Grant
    Filed: November 28, 2013
    Date of Patent: October 4, 2016
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuji Katsumata, Ken Ito, Takashi Nakajima, Akira Sawada, Shou Oono, Hiroyuki Komatsu