Patents by Inventor Yuji Tanabe

Yuji Tanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10434329
    Abstract: A power transmitter is provided that can include a microwave cavity resonant at a desired operating frequency, a hexagonal mesh top to leak evanescent fields out of the cavity, and a plurality of orthogonal monopole feeds with 90 degrees phase differences creating circularly polarized waves. The power transmitter can be configured to transmit energy to a wireless device implanted in an animal passing through the evanescent fields. Implantable devices are also described which can receive wireless energy from the power transmitter and stimulate the animals (e.g., optogenetic or electrical stimulation).
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: October 8, 2019
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Ada Shuk Yan Poon, John S. Y. Ho, Yuji Tanabe, Alexander J. Yeh, Kate L. Montgomery, Logan Grosenick, Emily A. Ferenczi, Vivien Tsao, Shrivats Mohan Iyer, Scott Lee Delp, Karl Deisseroth
  • Publication number: 20190247667
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propapting electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 10379059
    Abstract: A defect of a film is accurately inspected. A film inspection device includes: a light-receiving device generating a signal by receiving light which returns via a film after having been applied to the film, the signal being for detecting a defect included in the film; and a reflecting roller carrying the film while supporting the film from a side opposite to the light-receiving device in a field of view of the light-receiving device.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: August 13, 2019
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Genjiro Nishikata, Yuji Tanabe, Tatsuya Kataoka
  • Patent number: 10322289
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: June 18, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20190175920
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20190175922
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20190175919
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20190175923
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20190175921
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20190175924
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 10124180
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: November 13, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 10079438
    Abstract: A radio-frequency power receiving device has RF antennas connected to multiple controllable rectifying circuits to produce corresponding DC signals which are combined in a controllable switching network to produce a combined DC output. A control unit determines an amplitude control signal that controls each rectifying circuit and also determines switch control signals that control a switching network. The switching network controllably combines the direct-current signals to combine the multiple corresponding direct-current signals in series, in parallel, or in a combination of series and parallel.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: September 18, 2018
    Assignee: NVoLogic Inc
    Inventors: Yuji Tanabe, Ada Shuk Yan Poon, Siu-Weng Simon Wong
  • Publication number: 20180229044
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: November 17, 2017
    Publication date: August 16, 2018
    Inventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 10039924
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: August 7, 2018
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20180083371
    Abstract: A radio-frequency power receiving device has RF antennas connected to multiple controllable rectifying circuits to produce corresponding DC signals which are combined in a controllable switching network to produce a combined DC output. A control unit determines an amplitude control signal that controls each rectifying circuit and also determines switch control signals that control a switching network. The switching network controllably combines the direct-current signals to combine the multiple corresponding direct-current signals in series, in parallel, or in a combination of series and parallel.
    Type: Application
    Filed: September 21, 2016
    Publication date: March 22, 2018
    Inventors: Yuji Tanabe, Ada Shuk Yan Poon, Siu-Weng Simon Wong
  • Publication number: 20180071540
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: November 17, 2017
    Publication date: March 15, 2018
    Inventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Publication number: 20170259071
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: Ada Shuk Yan Poon, Alexander Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9744369
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: August 29, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9687664
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: June 27, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9662507
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 30, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim