Patents by Inventor Yukari Senda

Yukari Senda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9012047
    Abstract: The shape and number of surface defects are controlled so that the occurrence of failure is suppressed in an HDD device in which a magnetic head with a very small flying height, such as a DFH head, is mounted. A magnetic disk substrate is characterized in that when laser light with a wavelength of 405 nm and a laser power of 25 mW is irradiated with a spot size of 5 ?m and scattered light from the substrate is detected, the number of defects detected to have a size of 0.1 ?m to not more than 0.3 ?m is less than 50 per 24 cm2 and, with respect to the defects, there is no defect in which, in a bearing curve obtained by a bearing curve plot method using an atomic force microscope, a portion from an apex of the defect to 45% thereof is located in an area of defect height higher than a virtual line connecting from the apex of the defect to 45% thereof.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: April 21, 2015
    Assignee: Hoya Corporation
    Inventors: Kouji Kitsunai, Hiroshi Takeda, Yukari Senda
  • Publication number: 20140220386
    Abstract: The shape and number of surface defects are controlled so that the occurrence of failure is suppressed in an HDD device in which a magnetic head with a very small flying height, such as a DFH head, is mounted. A magnetic disk substrate is characterized in that when laser light with a wavelength of 405 nm and a laser power of 25 mW is irradiated with a spot size of 5 ?m and scattered light from the substrate is detected, the number of defects detected to have a size of 0.1 ?m to not more than 0.3 ?m is less than 50 per 24 cm2 and, with respect to the defects, there is no defect in which, in a bearing curve obtained by a bearing curve plot method using an atomic force microscope, a portion from an apex of the defect to 45% thereof is located in an area of defect height higher than a virtual line connecting from the apex of the defect to 45% thereof.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: HOYA CORPORATION
    Inventors: Kouji KITSUNAI, Hiroshi Takeda, Yukari Senda
  • Patent number: 8734967
    Abstract: The shape and number of surface defects are controlled so that the occurrence of failure is suppressed in an HDD device in which a magnetic head with a very small flying height, such as a DFH head, is mounted. A magnetic disk substrate is characterized in that when laser light with a wavelength of 405 nm and a laser power of 25 mW is irradiated with a spot size of 5 ?m and scattered light from the substrate is detected, the number of defects detected to have a size of 0.1 ?m to not more than 0.3 ?m is less than 50 per 24 cm2 and, with respect to the defects, there is no defect in which, in a bearing curve obtained by a bearing curve plot method using an atomic force microscope, a portion from an apex of the defect to 45% thereof is located in an area of defect height higher than a virtual line connecting from the apex of the defect to 45% thereof.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: May 27, 2014
    Assignee: Hoya Corporation
    Inventors: Kouji Kitsunai, Hiroshi Takeda, Yukari Senda
  • Publication number: 20110109994
    Abstract: The shape and number of surface defects are controlled so that the occurrence of failure is suppressed in an HDD device in which a magnetic head with a very small flying height, such as a DFH head, is mounted. A magnetic disk substrate is characterized in that when laser light with a wavelength of 405 nm and a laser power of 25 mW is irradiated with a spot size of 5 ?m and scattered light from the substrate is detected, the number of defects detected to have a size of 0.1 ?m to not more than 0.3 ?m is less than 50 per 24 cm2 and, with respect to the defects, there is no defect in which, in a bearing curve obtained by a bearing curve plot method using an atomic force microscope, a portion from an apex of the defect to 45% thereof is located in an area of defect height higher than a virtual line connecting from the apex of the defect to 45% thereof.
    Type: Application
    Filed: June 29, 2009
    Publication date: May 12, 2011
    Applicant: HOYA CORPORATION
    Inventors: Kouji Kitsunai, Hiroshi Takeda, Yukari Senda