Patents by Inventor Yukari Tani

Yukari Tani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8338833
    Abstract: The present invention provides a method of producing a silicon carbide semiconductor substrate in which a silicon carbide buffer layer doped with germanium and a semiconductor device layer are sequentially laminated on the buffer layer, a silicon carbide semiconductor substrate obtained by the method and a silicon carbide semiconductor in which electrodes are disposed on the silicon carbide semiconductor substrate.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: December 25, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, Japan Fine Ceramics Center
    Inventors: Akinori Seki, Yukari Tani, Noriyoshi Shibata
  • Patent number: 8053784
    Abstract: A channel layer (40) for forming a portion of a carrier path between a source electrode (100) and a drain electrode (110) is formed on a drift layer (30). The channel layer (40) includes Ge granular crystals formed on the drift layer (30), and a cap layer covering the Ge granular crystals.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: November 8, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Japan Fine Ceramics Center
    Inventors: Akinori Seki, Yukari Tani, Noriyoshi Shibata
  • Publication number: 20100224884
    Abstract: A channel layer (40) for forming a portion of a carrier path between a source electrode (100) and a drain electrode (110) is formed on a drift layer (30). The channel layer (40) includes Ge granular crystals formed on the drift layer (30), and a cap layer covering the Ge granular crystals.
    Type: Application
    Filed: August 7, 2007
    Publication date: September 9, 2010
    Inventors: Akinori Seki, Yukari Tani, Noriyoshi Shibata
  • Patent number: 7678671
    Abstract: A semiconductor material having a stepwise surface structure of (0001)-plane terraces and (11-2n)-plane steps [n?0] on the SiC substrate, a semiconductor device using the same and a method of producing the semiconductor material in which a carbon-rich surface is formed on the SiC substrate prior to epitaxial growth of an SiC crystal, the carbon-rich surface satisfies the ratio R=(I284.5/I282.8)>0.2, wherein I282.8 (ISiC) is an integrated intensity of a C1s signal having a peak at the binding energy relating to stoichiometric SiC (in the region of 282.8 eV), and I284.5 (IC) is an integrated intensity of a C1s signal having a peak at the binding energy relating to graphite, SiCx (x>1), or SiyCH1-y (y<1) (in the region of 284.5 eV), as measured by an X-ray photoelectron spectroscopic analyzer (XPS).
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: March 16, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Japan Fine Ceramics Center
    Inventors: Akinori Seki, Yukari Tani, Noriyoshi Shibata
  • Publication number: 20070096109
    Abstract: A semiconductor material having a stepwise surface structure of (0001)-plane terraces and (11-2n)-plane steps [n?0] on the SiC substrate, a semiconductor device using the same and a method of producing the semiconductor material in which a carbon-rich surface is formed on the SiC substrate prior to epitaxial growth of an SiC crystal, the carbon-rich surface satisfies the ratio R=(I284.5/I282.8)>0.2, wherein I282.8 (ISiC) is an integrated intensity of a C1s signal having a peak at the binding energy relating to stoichiometric SiC (in the region of 282.8 eV), and I284.5 (IC) is an integrated intensity of a C1s signal having a peak at the binding energy relating to graphite, SiCx (x>1), or SiyCH1-y (y<1) (in the region of 284.5 eV), as measured by an X-ray photoelectron spectroscopic analyzer (XPS).
    Type: Application
    Filed: October 26, 2006
    Publication date: May 3, 2007
    Inventors: Akinori Seki, Yukari Tani, Noriyoshi Shibata
  • Publication number: 20070032053
    Abstract: The present invention provides a method of producing a silicon carbide semiconductor substrate in which a silicon carbide buffer layer doped with germanium and a semiconductor device layer are sequentially laminated on the buffer layer, a silicon carbide semiconductor substrate obtained by the method and a silicon carbide semiconductor in which electrodes are disposed on the silicon carbide semiconductor substrate.
    Type: Application
    Filed: October 16, 2006
    Publication date: February 8, 2007
    Inventors: Akinori Seki, Yukari Tani, Noriyoshi Shibata