Patents by Inventor Yuki Kusachi

Yuki Kusachi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200136125
    Abstract: The present invention provides a method of producing an electrode active material molded body for a lithium-ion battery suitable for the production of a lithium-ion battery, and a method of producing a lithium-ion battery using the electrode active material molded body, wherein the methods can reduce the time, work, equipment, and the like required for the production. The present invention provides a method of producing an electrode composition molded body for a lithium-ion battery, including: a molding step of molding a composition containing an electrode active material for a lithium-ion battery and an electrolyte solution into an electrode active material molded body for a lithium-ion battery as an unbound product of the electrode active material for a lithium-ion battery, wherein the composition has an electrolyte solution content of 0.1 to 40 wt % based on the weight of the composition.
    Type: Application
    Filed: April 20, 2018
    Publication date: April 30, 2020
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Takuya SUENAGA, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20200091508
    Abstract: To provide a non-aqueous electrolyte secondary battery negative electrode material that can be produced even without performing a heat treatment at a high temperature such as 2,000° C. or higher and can have the discharge capacity further increased. The non-aqueous electrolyte secondary battery negative electrode material according to the invention has a core portion including carbonaceous negative electrode active material particles; and a shell portion including a polyimide and silicon-based negative electrode active material particles and/or tin-based negative electrode active material particles. There is a feature that the value of the ratio of the volume average particle size (D50) of the silicon-based negative electrode active material particles and/or tin-based negative electrode active material particles with respect to the volume average particle size (D50) of the carbonaceous negative electrode active material particles is 0.001 to 0.
    Type: Application
    Filed: March 26, 2018
    Publication date: March 19, 2020
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE, Naofumi SHOJI
  • Publication number: 20200058923
    Abstract: To provide a negative electrode for a lithium ion battery having high energy density and excellent rapid charging characteristics. A negative electrode for a lithium ion battery, the negative electrode including a negative electrode current collector, a negative electrode active material layer formed on the surface of the negative electrode current collector, and a non-aqueous liquid electrolyte including an electrolyte containing lithium ions and a non-aqueous solvent, in which the negative electrode active material layer includes a negative electrode active material and voids, the voids are filled with the non-aqueous liquid electrolyte, and a proportion of the battery capacity based on a total amount of lithium ions in the non-aqueous liquid electrolyte existing in the negative electrode active material layer with respect to the battery capacity based on a total amount of the negative electrode active material is 3% to 17%.
    Type: Application
    Filed: November 7, 2017
    Publication date: February 20, 2020
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuya MINAMI, Yusuke NAKASHIMA, Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20200028166
    Abstract: A negative electrode for non-aqueous electrolyte secondary battery provides a means for improving output characteristics at a high rate. The negative electrode has a negative electrode active material layer having a thickness of 150 to 1500 ?m formed on a surface of a current collector. In addition, the negative electrode active material layer includes coated negative electrode active material particles in which at least a part of a surface of a negative electrode active material is coated with a coating agent containing a coating resin and a conductive aid. Furthermore, a porosity of the negative electrode active material layer is 39.0% to 60.0% and a density of the negative electrode active material layer is 0.60 to 1.20 g/cm3.
    Type: Application
    Filed: August 15, 2017
    Publication date: January 23, 2020
    Inventors: Hiroyuki Tanaka, Gentaro Kano, Hideaki Horie, Yuki Kusachi, Yusuke Nakashima, Kazuya Minami
  • Publication number: 20200020938
    Abstract: To provide a negative electrode for a lithium ion battery which is excellent in energy density and cycle characteristics and has a small volume change at the time of charging. Provided is a negative electrode for a lithium ion battery comprising a negative electrode active material layer, in which the negative electrode active material layer is formed from a non-bound body of a mixture containing silicon and/or silicon compound particles and carbon-based negative electrode active material particles, a volume average particle size of the silicon and/or silicon compound particles is 0.01 to 10 ?m, a volume average particle size of the carbon-based negative electrode active material particles is 15 to 50 ?m, and a mass mixing ratio of the total of the silicon and silicon compound particles and the carbon-based negative electrode active material particles contained in the mixture is 5:95 to 45:55.
    Type: Application
    Filed: December 19, 2017
    Publication date: January 16, 2020
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Naofumi SHOJI, Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20200020926
    Abstract: To provide a negative electrode for a non-aqueous electrolyte secondary battery that can be produced even without performing a heat treatment at a high temperature such as 2,000° C. or higher and can have the discharge capacity and the cycle characteristics (capacity retention) further increased. The negative electrode for a non-aqueous electrolyte secondary battery according to the invention has a configuration in which a negative electrode active material layer containing a negative electrode material and a binder is formed on the surface of a current collector. Further, the negative electrode material has a core portion including carbonaceous negative electrode active material particles; and a shell portion including a polyimide and silicon-based negative electrode active material particles and/or tin-based negative electrode active material particles.
    Type: Application
    Filed: March 26, 2018
    Publication date: January 16, 2020
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE, Hideki NISHIMURA
  • Patent number: 10511004
    Abstract: A non-aqueous electrolyte secondary battery has a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and an electrolyte layer having an electrolyte solution containing a non-aqueous solvent. At least one of the positive electrode active material layer and the negative electrode active material layer contains an electrode material for a non-aqueous electrolyte secondary battery having a core part including an electrode active material and a shell part including a conductive material in a base material formed by a gel-forming polymer having a liquid absorption rate with respect to the electrolyte solution of 10 to 200%.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: December 17, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuki Kusachi, Yasuhiko Ohsawa, Hiroshi Akama, Hideaki Horie, Yuta Murakami, Kenichi Kawakita, Yusuke Mizuno, Yasuhiro Tsudo, Yasuhiro Shindo
  • Publication number: 20190355940
    Abstract: The battery pack has a laminated body in which unit cells are laminated one on another, a cell case having a first opening and containing the laminated body, and a first lid member to tightly close the first opening. The first opening is positioned to face, in connection with a unit cell laminated direction, a first face of the laminated body. The first lid member is configured to, if an internal pressure of the cell case is lower than atmospheric pressure, deform while keeping the tightly closing state, come into contact with the first face of the laminated body, and apply a pressure based on a differential pressure between atmospheric pressure and the internal pressure of the cell case to the contacting face.
    Type: Application
    Filed: March 8, 2017
    Publication date: November 21, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hajime SATOU, Yasuhiko OHSAWA, Yuki KUSACHI, Hiroshi AKAMA, Hideaki HORIE, Yusuke MIZUNO, Yusuke EMORI, Takahiro IMAISHI
  • Publication number: 20190348705
    Abstract: Embodiments described herein relate generally to electrochemical cells including a selectively permeable membrane and systems and methods for manufacturing the same. In some embodiments, the selectively permeable membrane can include a solid-state electrolyte material. In some embodiments, electrochemical cells can include a cathode disposed on a cathode current collector, an anode disposed on an anode current collector, and the selectively permeable membrane disposed therebetween. In some embodiments, the cathode and/or anode can include a slurry of an active material and a conductive material in a liquid electrolyte. In some embodiments, a catholyte can be different from an anolyte. In some embodiments, the catholyte can be optimized to improve the redox electrochemistry of the cathode and the anolyte can be optimized to improve the redox electrochemistry of the anode. In some embodiments, the selectively permeable membrane can be configured to isolate the catholyte from the anolyte.
    Type: Application
    Filed: January 8, 2019
    Publication date: November 14, 2019
    Inventors: Junzheng CHEN, Naoki OTA, Jeffry DISKO, Yuki KUSACHI
  • Publication number: 20190348712
    Abstract: To provide a structure which allows production of an electrode, even if the film thickness of an electrode is increased; and a non-aqueous electrolyte secondary battery using the same.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Yuki KUSACHI, Hiroshi AKAMA, Hideaki HORIE, Yusuke MIZUNO, Kenichi KAWAKITA, Yasuhiro Shindo, Yasuhiro TSUDO
  • Patent number: 10468729
    Abstract: A method for producing a non-aqueous electrolyte secondary battery including an electrolyte containing an electrolyte salt, a non-aqueous solvent capable of dissolving the electrolyte salt, and plural additives, wherein at least one of the additives has a reduction potential that is nobler than the reduction potential of the non-aqueous solvent. The method includes a first charging step for maintaining battery voltage at a negative electrode potential at which the additive having the noblest reduction potential of the additives is decomposed while the non-aqueous solvent and other additives are not reduced and decomposed and a second charging step for maintaining battery voltage so as to have reduction and decomposition of at least one of the non-aqueous solvents and bring the electrical potential of the negative electrode to at least 0.7 V relative to lithium. By having a uniform reaction in an electrode, a decrease in durability is suppressed.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: November 5, 2019
    Assignee: Envision AESC Japan Ltd.
    Inventors: Yuki Kusachi, Fumihiro Kawamura, Masanori Aoyagi, Kousuke Hagiyama
  • Publication number: 20190319254
    Abstract: To provide a negative electrode for a lithium ion battery in which a volume change of a silicon-based negative electrode active material due to charging and discharging is small, and a production method therefor. Provided is a method for producing a negative electrode for a lithium ion battery, the method including a step of forming a coating film on a current collector or a separator by using a slurry containing a negative electrode active material composition, which contains a silicon-based negative electrode active material and a carbon-based negative electrode active material, and a dispersion medium, in which the method further includes a step of doping the silicon-based negative electrode active material with lithium ions and a step of doping the carbon-based negative electrode active material with lithium ions before or after the step of forming the coating film and before assembling a lithium ion battery, and the method does not substantially include a step of drying the coating film.
    Type: Application
    Filed: December 19, 2017
    Publication date: October 17, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuya TSUCHIDA, Yusuke NAKASHIMA, Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Patent number: 10431851
    Abstract: To provide a structure which allows production of an electrode, even if the film thickness of an electrode is increased; and a non-aqueous electrolyte secondary battery using the same.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: October 1, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Yuki Kusachi, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Kenichi Kawakita, Yasuhiro Shindo, Yasuhiro Tsudo
  • Publication number: 20190267610
    Abstract: To provide a positive electrode for a lithium ion battery having high energy density and being capable of rapid discharging. A positive electrode for a lithium ion battery, the positive electrode including a positive electrode current collector, a positive electrode active material layer formed on the surface of the positive electrode current collector, and a non-aqueous liquid electrolyte including an electrolyte containing lithium ions and a non-aqueous solvent, in which the positive electrode active material layer includes a positive electrode active material and voids, the voids are filled with the non-aqueous liquid electrolyte, and a proportion of the battery capacity based on a total amount of lithium ions in the non-aqueous liquid electrolyte existing in the positive electrode active material layer with respect to the battery capacity based on a total amount of the positive electrode active material is 3.5 to 15%.
    Type: Application
    Filed: November 7, 2017
    Publication date: August 29, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuya MINAMI, Yusuke NAKASHIMA, Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Patent number: 10276858
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: April 30, 2019
    Assignees: SANYO CHEMICAL LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Patent number: 10236478
    Abstract: Provided is a method for producing a lithium ion cell having an outer container composed of a resin molded article, and the method for producing a lithium ion cell includes a current collector forming process of forming, on the inner side of an outer container, each of a first electrode current collector and a second electrode current collector composed of an electrically conductive polymer composition by using a molding die.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: March 19, 2019
    Assignee: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yasuhiro Shindo, Yusuke Mizuno, Kenichi Kawakita, Yasuhiko Ohsawa, Yuki Kusachi, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20190067680
    Abstract: To provide an electrode for a lithium ion secondary battery capable of enhancing a charge and discharge cycle durability of an electrode that uses a resin current collector. An electrode for a lithium ion secondary battery provided with a resin current collector including a polyolefin resin matrix and a conductive filler A, and an electrode active material layer provided on the resin current collector, in which a crosslinked resin thin-film layer, which contains an Ni filler as a conductive filler B that does not alloy with Li and which has impermeability to the electrolyte solution, is arranged between the resin current collector and a negative electrode active material layer.
    Type: Application
    Filed: February 14, 2017
    Publication date: February 28, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Yuki KUSACHI, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE, Naofumi SHOJI, Masatoshi OKURA
  • Patent number: 10211462
    Abstract: Provided is a lithium ion cell having a power generation part provided with a single cell obtained by stacking a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector in the order, and an exterior cell container for accommodating the power generation part, in which the positive electrode active material layer is a non-bound material of a positive electrode active material particle, the negative electrode active material layer is a non-bound material of a negative electrode active material particle, and the single cell has flexibility.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: February 19, 2019
    Assignee: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yasuhiro Shindo, Yusuke Mizuno, Kenichi Kawakita, Yasuhiko Ohsawa, Yuki Kusachi, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20190020032
    Abstract: An object of the present invention is to provide a resin for coating an active material for lithium ion batteries which can prevent expansion of the electrode without inhibiting conduction of lithium ions. The resin for coating an active material for lithium ion batteries according to the present invention has a liquid absorbing rate of 10% or more when the resin is immersed in an electrolyte solution, and a tensile elongation at break of 10% or more when the resin is saturated with the electrolyte solution.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 17, 2019
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuta MURAKAMI, Yuki KUSACHI, Yasuhiko OHSAWA, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20180316018
    Abstract: The present invention provides an electrode capable of reducing contact resistance between a resin current collector and the electrode, and a method of manufacturing the electrode. The electrode of the present invention includes a positive electrode current collector 11 containing a polymer material and a conductive filler, a positive electrode active material layer 13 disposed adjacent to the positive electrode current collector, and a concavoconvex shape 11c corresponding to a concavoconvex shape 13c formed on a surface of the positive electrode active material layer that is in contact with the positive electrode current collector, the concavoconvex shape being formed on a surface of the positive electrode current collector that is in contact with the positive electrode active material layer.
    Type: Application
    Filed: September 21, 2016
    Publication date: November 1, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Hajime SATOU, Yuki KUSACHI, Hiroshi AKAMA, Hideaki HORIE, Masatoshi OKURA