Patents by Inventor Yuki SHIMURA

Yuki SHIMURA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250010467
    Abstract: A control device controls an attitude control actuator by means of which a distal end member located on a link actuation device can be moved. A parallel linkage mechanism includes a proximal end-side link hub, a distal end-side link hub, and three linkages via which the distal end-side link hub is coupled to the proximal end-side link hub in such a manner that allows the attitude of the distal end-side link hub to change relative to the proximal end-side link hub. The control device includes a parameter switcher which switches control parameters to adjust the jerk of the attitude control actuator or the distal end member based on a load applied to the distal end member. The parameter switcher can switch more than one control parameter including at least one of the filter time constant of a moving average filter or a model following control gain.
    Type: Application
    Filed: September 25, 2024
    Publication date: January 9, 2025
    Applicant: NTN CORPORATION
    Inventors: Yuki SHIMURA, Masaki KAGAMI, Kota FURUHASHI
  • Patent number: 11316078
    Abstract: An optical wavelength converter (1) is configured such that an optical wavelength conversion member (9) is bonded to a heat dissipation member (13) having superior heat dissipation property. Thus, heat generated by light incident on the optical wavelength conversion member (9) can be efficiently dissipated. Therefore, even when high-energy light is incident on the optical wavelength converter, temperature quenching is less likely to occur, and thus high fluorescence intensity can be maintained. An intermediate film (21) is disposed between a reflective film (19) and a bonding portion (15). The presence of the intermediate film (21) improves the adhesion between the reflective film (19) and the bonding portion (15), thereby enhancing the heat dissipation from the optical wavelength conversion member (9) to the heat dissipation member (13). Thus, the temperature quenching of the optical wavelength conversion member (9) can be prevented, thereby enhancing fluorescence intensity.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: April 26, 2022
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Syohei Takaku, Yusuke Katsu, Tsuneyuki Ito, Yuki Shimura, Shinji Ban, Takeshi Mitsuoka
  • Publication number: 20210098657
    Abstract: An optical wavelength conversion member according to one aspect of the present disclosure includes a ceramic sintered body, wherein the ceramic sintered body has a fluorescent phase containing, as a main. component, fluorescent crystal grains that generate fluorescence in response to incident light, and a translucent phase containing translucent crystal grains as a main component. The optical wavelength conversion member includes a metal layer having light reflectivity and provided on a side of the ceramic sintered body opposite the side on which the light is incident, and a dielectric multilayer film including dielectric layers having different optical refractive indices and provided between the ceramic sintered body and the metal layer.
    Type: Application
    Filed: May 10, 2019
    Publication date: April 1, 2021
    Inventors: Tsuneyuki ITO, Shohei TAKAKU, Yuki SHIMURA, Shinji BAN, Yusuke KATSU
  • Publication number: 20200303597
    Abstract: An optical wavelength converter (1) is configured such that an optical wavelength conversion member (9) is bonded to a heat dissipation member (13) having superior heat dissipation property. Thus, heat generated by light incident on the optical wavelength conversion member (9) can be efficiently dissipated. Therefore, even when high-energy light is incident on the optical wavelength converter, temperature quenching is less likely to occur, and thus high fluorescence intensity can be maintained. An intermediate film (21) is disposed between a reflective film (19) and a bonding portion (15). The presence of the intermediate film (21) improves the adhesion between the reflective film (19) and the bonding portion (15), thereby enhancing the heat dissipation from the optical wavelength conversion member (9) to the heat dissipation member (13). Thus, the temperature quenching of the optical wavelength conversion member (9) can be prevented, thereby enhancing fluorescence intensity.
    Type: Application
    Filed: September 10, 2018
    Publication date: September 24, 2020
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Syohei TAKAKU, Yusuke KATSU, Tsuneyuki ITO, Yuki SHIMURA, Shinji BAN, Takeshi MITSUOKA
  • Patent number: 10727378
    Abstract: An optical wavelength conversion member and a light-emitting device including the optical wavelength conversion member. The optical wavelength conversion member (9) is formed of a ceramic sintered body having a fluorescent phase containing fluorescent crystal grains as a main component and a translucent phase containing translucent crystal grains as a main component. Crystal grains of the fluorescent phase have a composition represented by formula A3B5O12:Ce, where the element A is selected from Sc, Y, and lanthanoids (except for Ce), and the element B is selected from Al and Ga. In the optical wavelength conversion member (9), 0.3<a<34 and 300 ?m<y<1,050 ?m are satisfied, wherein a represents the area ratio of the translucent phase to the fluorescent phase in a cross section of the optical wavelength conversion member (9), and y represents the interfacial length of the fluorescent phase.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: July 28, 2020
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Shohei Takaku, Yusuke Katsu, Tsuneyuki Ito, Yuki Shimura, Takeshi Mitsuoka, Jun Moteki
  • Publication number: 20190259918
    Abstract: An optical wavelength conversion member and a light-emitting device including the optical wavelength conversion member. The optical wavelength conversion member (9) is formed of a ceramic sintered body having a fluorescent phase containing fluorescent crystal grains as a main component and a translucent phase containing translucent crystal grains as a main component. Crystal grains of the fluorescent phase have a composition represented by formula A3B5O12:Ce, where the element A is selected from Sc, Y, and lanthanoids (except for Ce), and the element B is selected from Al and Ga. In the optical wavelength conversion member (9), 0.3<a<34 and 300 ?m<y<1,050 ?m are satisfied, wherein a represents the area ratio of the translucent phase to the fluorescent phase in a cross section of the optical wavelength conversion member (9), and y represents the interfacial length of the fluorescent phase.
    Type: Application
    Filed: October 20, 2017
    Publication date: August 22, 2019
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Shohei TAKAKU, Yusuke KATSU, Tsuneyuki ITO, Yuki SHIMURA, Takeshi MITSUOKA, Jun MOTEKI