Patents by Inventor Yukihiro Tsuji

Yukihiro Tsuji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160172530
    Abstract: A method for producing a semiconductor light receiving device includes the steps of growing a stacked semiconductor layer including a light-receiving layer having a super-lattice structure, the super-lattice structure including first and second semiconductor layers stacked alternately; forming a mesa structure by etching the stacked semiconductor layer, the mesa structure having a side surface exposed in an atmosphere; forming a deposited layer on the side surface of the mesa structure by supplying a silicon raw material, the deposited layer containing silicon generated from the silicon raw material; and, after the step of forming the deposited layer, forming a passivation film on the side surface of the mesa structure. The first semiconductor layer contains gallium as a constituent element. In the step of forming the deposited layer, the silicon raw material is supplied without supplying an oxygen raw material containing an oxygen element.
    Type: Application
    Filed: December 8, 2015
    Publication date: June 16, 2016
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro TSUJI
  • Patent number: 9300115
    Abstract: A quantum cascade laser includes a semiconductor region having a main surface including first and second regions arranged in a first axis direction; a stacked semiconductor layer disposed on the second region, the stacked semiconductor layer including a core layer and an upper cladding layer disposed on the core layer; and a distributed Bragg reflector disposed on the first region, the distributed Bragg reflector including at least one semiconductor wall having a side surface extending in a second axis direction perpendicular to the main surface of the semiconductor region, the semiconductor wall including the core layer and the upper cladding layer. The side surface of the semiconductor wall is optically coupled to an end facet of the stacked semiconductor layer. The side surface of the semiconductor wall includes a side surface of the core layer having a recess portion depressed from a side surface of the upper cladding layer in the semiconductor wall.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: March 29, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro Tsuji
  • Publication number: 20150357794
    Abstract: A quantum cascade laser includes a semiconductor region having a main surface including first and second regions arranged in a first axis direction; a stacked semiconductor layer disposed on the second region, the stacked semiconductor layer including a core layer and an upper cladding layer disposed on the core layer; and a distributed Bragg reflector disposed on the first region, the distributed Bragg reflector including at least one semiconductor wall having a side surface extending in a second axis direction perpendicular to the main surface of the semiconductor region, the semiconductor wall including the core layer and the upper cladding layer. The side surface of the semiconductor wall is optically coupled to an end facet of the stacked semiconductor layer. The side surface of the semiconductor wall includes a side surface of the core layer having a recess portion depressed from a side surface of the upper cladding layer in the semiconductor wall.
    Type: Application
    Filed: May 29, 2015
    Publication date: December 10, 2015
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro TSUJI
  • Publication number: 20150311366
    Abstract: A light receiving device includes a mesa structure including a light absorption layer disposed on a semiconductor region; a passivation film disposed on a side surface of the mesa structure, the passivation film containing oxygen; and a nitriding layer disposed between the side surface of the mesa structure and the passivation film. The light absorption layer includes a super-lattice structure including first semiconductor layers and second semiconductor layers that are alternately stacked. The first semiconductor layer is made of a III-V group compound semiconductor. The second semiconductor layer is made of a III-V group compound semiconductor that is different from the III-V group compound semiconductor of the first semiconductor layer. The first semiconductor layer contains antimony as a group V constituent element. In addition, the nitriding layer is made of a nitride containing a group III constituent element of the first semiconductor layer and/or the second semiconductor layer.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 29, 2015
    Applicant: SUMITOMO ELCTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro TSUJI, Hiroshi Inada
  • Publication number: 20150207298
    Abstract: A method for producing a semiconductor optical device includes the steps of forming a first semiconductor substrate having a stacked semiconductor layer; adjusting a proportion of H2O molecules in a process chamber, the process chamber having an inner surface on which an alumite film is formed by anodizing; and, after the step of adjusting the proportion of H2O molecules, forming a substrate product by arranging the first semiconductor substrate in the process chamber and etching the stacked semiconductor layer using a dry etching method in which a halogen-based gas is used as an etching gas. In addition, the step of adjusting the proportion of H2O molecules in the process chamber includes a first substep of evacuating the process chamber; a second substep of dry-cleaning the inner surface of the process chamber; and a third substep of generating a plasma in the process chamber using a halogen-based gas.
    Type: Application
    Filed: January 13, 2015
    Publication date: July 23, 2015
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro TSUJI
  • Patent number: 8956902
    Abstract: A process for manufacturing buried hetero-structure laser diodes includes the steps of forming a stacked semiconductor layer on a substrate; forming a mask layer on the stacked semiconductor layer; forming a semiconductor mesa by etching the stacked semiconductor layer through the mask layer; forming an overhang of the mask layer by selectively etching the stacked semiconductor layer of the semiconductor mesa; selectively growing a buried layer on a side surface of the semiconductor mesa while leaving the mask layer on the semiconductor mesa; forming a lateral portion of the buried layer, the lateral portion having a side surface adjacent to the side surface of the semiconductor mesa; after forming the lateral portion of the buried layer, removing the mask layer on the semiconductor mesa; and forming an electrode on a top surface of the semiconductor mesa and on the side surface of the lateral portion of the buried layer.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: February 17, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yukihiro Tsuji
  • Patent number: 8827685
    Abstract: A nano-imprint mold includes a mold base; mold body having a first surface and a second surface opposite the first surface; and an elastic body disposed between a surface of the mold base and the first surface of the mold body, the elastic body being composed of resin. The second surface of the mold body is provided with a nano-imprint pattern. In addition, the elastic body has a bulk modulus lower than a bulk modulus of the mold body.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yukihiro Tsuji, Masaki Yanagisawa
  • Patent number: 8652862
    Abstract: A method for etching an insulating film includes the steps of forming an insulating film; forming a first resin layer composed of a non-silicon-containing resin on the insulating film; forming a pattern including projections and recesses in the first resin layer; forming a second resin layer composed of a silicon-containing resin to cover the projections and the recesses of the pattern in the first resin layer; etching the second resin layer by reactive ion etching with etching gas containing CF4 gas and oxygen gas until the projections of the first resin layer are exposed, a Si component of the second resin layer being oxidized in etching the second resin layer; selectively etching the first resin layer until the insulating film is exposed using as a mask the second resin layer buried in the recesses of the first resin layer to form a resin layer mask; and etching the insulating film using the resin layer mask.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 18, 2014
    Assignee: Sumitomo Electronic Industries Ltd.
    Inventor: Yukihiro Tsuji
  • Patent number: 8636498
    Abstract: A nano-imprint mold includes a mold body having a first surface provided with a pattern having projections and recesses, a second surface opposite the first surface and a side surface between the first surface and the second surface; and a mold base having a surface for fixing the mold body thereto. In addition, the second surface of the mold body is fixed to a part of the surface of the mold base, the second surface of the mold body being disposed away from at least a part of an edge of the surface of the mold base. Furthermore, the mold body has a shape such that a width thereof in a direction orthogonal to a direction extending from the first surface toward the second surface decreases from the first surface toward the second surface.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: January 28, 2014
    Assignee: Sumitomo Electric Industries Ltd
    Inventors: Yukihiro Tsuji, Masaki Yanagisawa
  • Patent number: 8633041
    Abstract: A method for manufacturing a quantum cascade laser includes the steps of forming a semiconductor stacked structure including a first semiconductor region and a second semiconductor region; forming an etching mask having a striped pattern on the second semiconductor region; forming a semiconductor mesa structure having a mesa shape in cross section by etching the first and second semiconductor regions using the etching mask; forming an insulating layer over a top portion and side surfaces of the semiconductor mesa structure and the first semiconductor region; forming an opening in a portion of the insulating layer that is disposed on the top portion of the semiconductor mesa structure; and forming an electrode over the inside of the opening of the insulating layer, the top portion and side surfaces of the semiconductor mesa structure, and the first semiconductor region.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: January 21, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yukihiro Tsuji
  • Patent number: 8501511
    Abstract: Manufacturing a laser diode includes growing an active layer, a first InP layer, and a diffraction grating layer; forming an alignment mark having a recess by etching the diffraction grating layer and the first InP layer; forming a first etching mask; forming a diffraction grating in the diffraction grating layer using the first etching mask; forming a modified layer containing InAsP on a surface of the alignment mark recess by supplying a first source gas containing As and a second source gas containing P; growing a second InP layer on the diffraction grating layer and on the alignment mark; forming a second etching mask on the second InP layer; selectively etching the second InP layer embedded in the recess of the alignment mark through the second etching mask by using the modified layer serving as an etching stopper; and forming a waveguide structure using the alignment mark.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 6, 2013
    Assignee: Sumitomo Electric Industries Ltd.
    Inventor: Yukihiro Tsuji
  • Patent number: 8486809
    Abstract: A method for producing a semiconductor device includes the steps of forming a semiconductor layer; forming a non-silicon-containing resin layer on the semiconductor layer; forming a pattern in the non-silicon-containing resin layer; forming a silicon-containing resin layer on the non-silicon-containing resin layer; etching the silicon-containing resin layer; selectively etching the non-silicon-containing resin layer; and etching the semiconductor layer.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: July 16, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yukihiro Tsuji
  • Patent number: 8389395
    Abstract: A method for manufacturing includes the steps of forming a BCB resin region on a semiconductor optical device; processing a surface of the BCB resin region with inductively coupled plasma produced with a high-frequency power supply for supplying ICP power and a high-frequency power supply for supplying bias power, thus forming a silicon oxide film on the surface of the BCB resin region and roughening the surface of the BCB resin region with projections and recesses; and forming an electrode pad on the surface of the BCB resin region in direct contact with the silicon oxide film. The surface roughness of the BCB resin region and the thickness of the silicon oxide film on the surface of the BCB resin region are controlled by adjusting the bias power and the ICP power.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: March 5, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yukihiro Tsuji
  • Patent number: 8357555
    Abstract: A method for producing a semiconductor optical device includes the steps of forming a semiconductor layer; forming a non-silicon-containing resin layer; forming a first pattern in the non-silicon-containing resin layer; forming a silicon-containing resin layer; etching the silicon-containing resin layer to have a second pattern reverse to the first pattern; selectively etching the non-silicon-containing resin layer by a RIE method employing a gas mixture containing CF4 gas and O2 gas, the non-silicon-containing resin layer having the second pattern; and etching the semiconductor layer.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: January 22, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yukihiro Tsuji
  • Publication number: 20130017638
    Abstract: A process for manufacturing buried hetero-structure laser diodes includes the steps of forming a stacked semiconductor layer on a substrate; forming a mask layer on the stacked semiconductor layer; forming a semiconductor mesa by etching the stacked semiconductor layer through the mask layer; forming an overhang of the mask layer by selectively etching the stacked semiconductor layer of the semiconductor mesa; selectively growing a buried layer on a side surface of the semiconductor mesa while leaving the mask layer on the semiconductor mesa; forming a lateral portion of the buried layer, the lateral portion having a side surface adjacent to the side surface of the semiconductor mesa; after forming the lateral portion of the buried layer, removing the mask layer on the semiconductor mesa; and forming an electrode on a top surface of the semiconductor mesa and on the side surface of the lateral portion of the buried layer.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 17, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro TSUJI
  • Publication number: 20120309123
    Abstract: A method for manufacturing a quantum cascade laser includes the steps of forming a semiconductor stacked structure including a first semiconductor region and a second semiconductor region; forming an etching mask having a striped pattern on the second semiconductor region; forming a semiconductor mesa structure having a mesa shape in cross section by etching the first and second semiconductor regions using the etching mask; forming an insulating layer over a top portion and side surfaces of the semiconductor mesa structure and the first semiconductor region; forming an opening in a portion of the insulating layer that is disposed on the top portion of the semiconductor mesa structure; and forming an electrode over the inside of the opening of the insulating layer, the top portion and side surfaces of the semiconductor mesa structure, and the first semiconductor region.
    Type: Application
    Filed: May 17, 2012
    Publication date: December 6, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro TSUJI
  • Publication number: 20120142129
    Abstract: A method of manufacturing a semiconductor laser having a diffraction grating includes the steps of forming a first semiconductor layer on a semiconductor substrate; forming periodic projections and recesses which constitute a diffraction grating in the first semiconductor layer; cleaning a surface of the first semiconductor layer with water; drying the surface of the first semiconductor layer; and forming a second semiconductor layer on the first semiconductor layer. In drying the surface of the first semiconductor layer, after replacing water adhering to the surface of the first semiconductor layer with a water-soluble organic solvent, exposing the surface of the first semiconductor layer provided with the projections and recesses to an atmosphere containing the water-soluble organic solvent. At least one of the first semiconductor layer and the second semiconductor layer is composed of a p-type semiconductor.
    Type: Application
    Filed: November 28, 2011
    Publication date: June 7, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro TSUJI
  • Patent number: 8153530
    Abstract: In this method of manufacturing a semiconductor device, the remaining layer of an etching mask layer remains in a predetermined thickness when the stamping face of a nano-stamper is pressed on the surface of the etching mask layer. Therefore, the remaining layer of the etching mask layer functions as a cushion so that the stress added to the nano-stamper and the semiconductor substrate is reduced. Accordingly, the crystal defect that might otherwise be introduced in the semiconductor substrate in pressing the nano-stamper on the semiconductor substrate can be restrained, resulting in suppression of the degradation of optical characteristics of the semiconductor device. Also, since the nano-stamper can be prevented from being damaged, extra steps such as the replacement of the nano-stamper can be avoided.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 10, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yukihiro Tsuji
  • Publication number: 20120058635
    Abstract: A method for manufacturing includes the steps of forming a BCB resin region on a semiconductor optical device; processing a surface of the BCB resin region with inductively coupled plasma produced with a high-frequency power supply for supplying ICP power and a high-frequency power supply for supplying bias power, thus forming a silicon oxide film on the surface of the BCB resin region and roughening the surface of the BCB resin region with projections and recesses; and forming an electrode pad on the surface of the BCB resin region in direct contact with the silicon oxide film. The surface roughness of the BCB resin region and the thickness of the silicon oxide film on the surface of the BCB resin region are controlled by adjusting the bias power and the ICP power.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 8, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro TSUJI
  • Publication number: 20120058582
    Abstract: A method for etching an insulating film includes the steps of forming an insulating film; forming a first resin layer composed of a non-silicon-containing resin on the insulating film; forming a pattern including projections and recesses in the first resin layer; forming a second resin layer composed of a silicon-containing resin to cover the projections and the recesses of the pattern in the first resin layer; etching the second resin layer by reactive ion etching with etching gas containing CF4 gas and oxygen gas until the projections of the first resin layer are exposed, a Si component of the second resin layer being oxidized in etching the second resin layer; selectively etching the first resin layer until the insulating film is exposed using as a mask the second resin layer buried in the recesses of the first resin layer to form a resin layer mask; and etching the insulating film using the resin layer mask.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 8, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro TSUJI