Patents by Inventor Yukihisa Ueno

Yukihisa Ueno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11610779
    Abstract: An ion implanted region is formed by implanting Mg ions into a predetermined region of the surface of the first p-type layer. Subsequently, a second n-type layer is formed on the first p-type layer and the ion implanted region. A trench is formed by dry etching a predetermined region of the surface of the second n-type layer until reaching the first n-type layer. Next, heat treatment is performed to diffuse Mg. Thus, a p-type impurity region is formed in a region with a predetermined depth from the surface of the first n-type layer below the ion implanted region. Since the trench is formed before the heat treatment, Mg is not diffused laterally beyond the trench. Therefore, the width of the p-type impurity region is almost the same as the width of the first p-type layer divided by the trench.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: March 21, 2023
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Kota Yasunishi, Yukihisa Ueno
  • Publication number: 20210376127
    Abstract: The present invention provides a method for producing a semiconductor device in which the on-resistance can be reduced while increasing the threshold voltage. A first n-type layer, a first p-type layer, a second p-type layer, and a second n-type layer are sequentially deposited through MOCVD on a substrate. The second p-type layer has a Mg concentration higher than the Mg concentration of the first p-type layer and not less than 6×1018/cm3. By setting the Mg concentration in this way, the threshold voltage is almost determined by the Mg concentration of the second p-type layer, and the threshold voltage does not depend on the Mg concentration of the first p-type layer. Therefore, channel resistance, that is, on-resistance is reduced by setting the Mg concentration of the first p-type layer to less than 6×1018/cm3.
    Type: Application
    Filed: April 27, 2021
    Publication date: December 2, 2021
    Inventors: Toru OKA, Yukihisa UENO
  • Publication number: 20210257216
    Abstract: An ion implanted region is formed by implanting Mg ions into a predetermined region of the surface of the first p-type layer. Subsequently, a second n-type layer is formed on the first p-type layer and the ion implanted region. A trench is formed by dry etching a predetermined region of the surface of the second n-type layer until reaching the first n-type layer. Next, heat treatment is performed to diffuse Mg. Thus, a p-type impurity region is formed in a region with a predetermined depth from the surface of the first n-type layer below the ion implanted region. Since the trench is formed before the heat treatment, Mg is not diffused laterally beyond the trench. Therefore, the width of the p-type impurity region is almost the same as the width of the first p-type layer divided by the trench.
    Type: Application
    Filed: January 26, 2021
    Publication date: August 19, 2021
    Inventors: Kota YASUNISHI, Yukihisa UENO
  • Patent number: 10854454
    Abstract: To restrain a side portion of a trench from being damaged by ion implantation. A method for manufacturing a semiconductor device comprises a stacking process, an ion implantation process, a heat treatment process, a groove forming process, and a first electrode forming process. In the stacking process, a p-type semiconductor layer is stacked on a first n-type semiconductor layer. In the ion implantation process, an n-type impurity or a p-type impurity is ion-implanted into a position on a surface of the p-type semiconductor layer. The position is away from a position where a groove is to be formed. In the heat treatment process, heat treatment is performed to activate the ion-implanted impurity so as to form an implanted region and to diffuse a p-type impurity in the p-type semiconductor layer into the first n-type semiconductor layer located below the implanted region so as to form a p-type impurity diffused region.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 1, 2020
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Yukihisa Ueno, Nariaki Tanaka, Junya Nishii, Toru Oka
  • Patent number: 10832911
    Abstract: An n-type GaN layer, a p-type diffusion region formed by ion implantation and annealing in a part of the n-type layer, and a Schottky electrode are formed on the n-type layer. A region without the p-type region is defined as region A, and a region with the p-type region is defined as region B. In region A, an average density of each electron trap level of the n-type layer in a region having a depth of 0.8 ?m to 1.6 ?m on the n-type layer side is set so as to satisfy the predetermined conditions. In region B, an average density of each carrier trap level of the n-type layer in a region having a depth of 0.8 ?m to 1.6 ?m on the n-type layer side from a boundary between the n-type layer and the p-type diffusion region is set so as to satisfy the predetermined conditions.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 10, 2020
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Nariaki Tanaka, Toru Oka, Yukihisa Ueno, Kota Yasunishi
  • Publication number: 20200098565
    Abstract: An n-type GaN layer, a p-type diffusion region formed by ion implantation and annealing in a part of the n-type layer, and a Schottky electrode are formed on the n-type layer. A region without the p-type region is defined as region A, and a region with the p-type region is defined as region B. In region A, an average density of each electron trap level of the n-type layer in a region having a depth of 0.8 ?m to 1.6 ?m on the n-type layer side is set so as to satisfy the predetermined conditions. In region B, an average density of each carrier trap level of the n-type layer in a region having a depth of 0.8 ?m to 1.6 ?m on the n-type layer side from a boundary between the n-type layer and the p-type diffusion region is set so as to satisfy the predetermined conditions.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 26, 2020
    Inventors: Nariaki Tanaka, Toru Oka, Yukihisa Ueno, Kota Yasunishi
  • Publication number: 20190341260
    Abstract: To restrain a side portion of a trench from being damaged by ion implantation. A method for manufacturing a semiconductor device comprises a stacking process, an ion implantation process, a heat treatment process, a groove forming process, and a first electrode forming process. In the stacking process, a p-type semiconductor layer is stacked on a first n-type semiconductor layer. In the ion implantation process, an n-type impurity or a p-type impurity is ion-implanted into a position on a surface of the p-type semiconductor layer. The position is away from a position where a groove is to be formed. In the heat treatment process, heat treatment is performed to activate the ion-implanted impurity so as to form an implanted region and to diffuse a p-type impurity in the p-type semiconductor layer into the first n-type semiconductor layer located below the implanted region so as to form a p-type impurity diffused region.
    Type: Application
    Filed: April 22, 2019
    Publication date: November 7, 2019
    Inventors: Yukihisa UENO, Nariaki TANAKA, Junya NISHII, Toru OKA
  • Patent number: 10403727
    Abstract: To provide a technique for alleviating electric field concentration at an end portion and the vicinity of the end portion of the bottom surface of a trench. In a non-active region, a semiconductor device comprises: an outer trench penetrating a third semiconductor layer and a second semiconductor layer to reach a first semiconductor layer, and surrounding an active region; a second insulating film covering the surface of the outer trench; a conductor formed in the outer trench covered by the second insulating film and electrically insulated from a control electrode and a contact electrode; and an outer electrode located outside the outer trench, contacting the second semiconductor layer, and being electrically connected to the contact electrode.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: September 3, 2019
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Tsutomu Ina, Yukihisa Ueno, Tohru Oka
  • Publication number: 20190097004
    Abstract: To provide a technique for alleviating electric field concentration at an end portion and the vicinity of the end portion of the bottom surface of a trench. In a non-active region, a semiconductor device comprises: an outer trench penetrating a third semiconductor layer and a second semiconductor layer to reach a first semiconductor layer, and surrounding an active region; a second insulating film covering the surface of the outer trench; a conductor formed in the outer trench covered by the second insulating film and electrically insulated from a control electrode and a contact electrode; and an outer electrode located outside the outer trench, contacting the second semiconductor layer, and being electrically connected to the contact electrode.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 28, 2019
    Inventors: Tsutomu INA, Yukihisa UENO, Tohru OKA
  • Patent number: 9985127
    Abstract: To improve the breakdown voltage of a semiconductor device. In a terminal region of the semiconductor device, a mesa groove, a recess groove, an electric field relaxation region, and a gradient distributed low concentration p-type layer region are formed. A recess groove is fromed between a device region and the mesa groove so as to surround the device region. A region where a p-type layer is thinned by the recess groove is the electric field relaxation region. The gradient distributed low concentration p-type layer region is formed on the surface of the electric field relaxation region. The average carrier concentration of the entire gradient distributed low concentration p-type layer region is lower than the carrier concentration of the p-type layer. By forming the gradient distributed low concentration p-type layer region, the electric field relaxation region is quickly completely depleted when a reverse voltage is applied, thereby improving the breakdown voltage.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: May 29, 2018
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Yukihisa Ueno, Nariaki Tanaka
  • Patent number: 9905432
    Abstract: The method for manufacturing comprises an ion implantation process of implanting a p-type impurity into a semiconductor layer mainly made of a group III nitride by ion implantation; a first heating process of heating the semiconductor layer at a first temperature in a first atmospheric gas including ammonia (NH3) after the ion implantation process; and a second heating process of heating the semiconductor layer, after the first heating process, at a second temperature that is lower than the first temperature in a second atmospheric gas including oxygen (O2).
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: February 27, 2018
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Takaki Niwa, Tohru Oka, Masayoshi Kosaki, Takahiro Fujii, Yukihisa Ueno
  • Publication number: 20170288050
    Abstract: To improve the breakdown voltage of a semiconductor device. In a terminal region of the semiconductor device, a mesa groove, a recess groove, an electric field relaxation region, and a gradient distributed low concentration p-type layer region are formed. A recess groove is fromed between a device region and the mesa groove so as to surround the device region. A region where a p-type layer is thinned by the recess groove is the electric field relaxation region. The gradient distributed low concentration p-type layer region is formed on the surface of the electric field relaxation region. The average carrier concentration of the entire gradient distributed low concentration p-type layer region is lower than the carrier concentration of the p-type layer. By forming the gradient distributed low concentration p-type layer region, the electric field relaxation region is quickly completely depleted when a reverse voltage is applied, thereby improving the breakdown voltage.
    Type: Application
    Filed: March 20, 2017
    Publication date: October 5, 2017
    Inventors: Yukihisa UENO, Nariaki TANAKA
  • Patent number: 9704952
    Abstract: An object is to provide a technique that suppresses decrease in the breakdown voltage of a protective element. There is provided a semiconductor device that comprises a vertical MOS transistor and a protective element. A first nitride semiconductor layer has a convex that is protruded toward a second nitride semiconductor layer. The convex has a top face placed at a position to overlap with at least part of an ohmic electrode of a second conductive type when viewed from a stacking direction of a stacked body. The thickness of the second nitride semiconductor layer in a portion which a bottom face of a trench is in contact with is greater than the thickness of the second nitride semiconductor layer in a portion which the top face of the convex is in contact with.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: July 11, 2017
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Takaki Niwa, Masayoshi Kosaki, Takahiro Fujii, Tohru Oka, Yukihisa Ueno
  • Publication number: 20160284843
    Abstract: An object is to provide a technique that suppresses decrease in the breakdown voltage of a protective element. There is provided a semiconductor device that comprises a vertical MOS transistor and a protective element. A first nitride semiconductor layer has a convex that is protruded toward a second nitride semiconductor layer. The convex has a top face placed at a position to overlap with at least part of an ohmic electrode of a second conductive type when viewed from a stacking direction of a stacked body. The thickness of the second nitride semiconductor layer in a portion which a bottom face of a trench is in contact with is greater than the thickness of the second nitride semiconductor layer in a portion which the top face of the convex is in contact with.
    Type: Application
    Filed: March 9, 2016
    Publication date: September 29, 2016
    Inventors: Takaki NIWA, Masayoshi Kosaki, Takahiro Fujii, Tohru Oka, Yukihisa Ueno
  • Publication number: 20160284563
    Abstract: The method for manufacturing comprises an ion implantation process of implanting a p-type impurity into a semiconductor layer mainly made of a group III nitride by ion implantation; a first heating process of heating the semiconductor layer at a first temperature in a first atmospheric gas including ammonia (NH3) after the ion implantation process; and a second heating process of heating the semiconductor layer, after the first heating process, at a second temperature that is lower than the first temperature in a second atmospheric gas including oxygen (O2).
    Type: Application
    Filed: March 3, 2016
    Publication date: September 29, 2016
    Inventors: Takaki NIWA, Tohru Oka, Masayoshi Kosaki, Takahiro Fujii, Yukihisa Ueno
  • Patent number: 9356140
    Abstract: A device comprises a substrate, an n-layer and a p-layer, an n-electrode, and a p-electrode. A step is formed at an outer circumference of the device. A protective film is formed so as to continuously cover a side surface and a bottom surface of the step. A field plate electrode connected with the p-electrode is formed on the protective film. When a distance from the pn junction interface to the surface of the protective film on the bottom surface of the step is defined as h (?m), a dielectric constant of the protective film is defined as ?s, and a thickness of the protective film at the pn junction interface on the side surface of the step is defined as d (?m), (?s·h)/d is 4 or more, and ?s/d is 3 (1/?m) or more.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: May 31, 2016
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Yukihisa Ueno, Toru Oka
  • Patent number: 9349668
    Abstract: A semiconductor device includes; a semiconductor layer mainly made of GaN; a protective film provided to have electrical insulation property and configured to coat the semiconductor layer; and an electrode provided to have electrical conductivity and configured to form a Schottky junction with the semiconductor layer. The protective film includes: a first layer made of Al2O3 and arranged adjacent to the semiconductor layer; a second layer made of an electrical insulation material different from Al2O3 and formed on the first layer; and an opening structure formed to pass through the first layer and the second layer. The electrode is located inside of the opening structure.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: May 24, 2016
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Yukihisa Ueno, Toru Oka, Kazuya Hasegawa
  • Patent number: 9136367
    Abstract: A semiconductor device includes: a p-type semiconductor layer mainly made of GaN; an n-type semiconductor layer mainly made of GaN and joined with the p-type semiconductor layer; a protective film arranged to coat the p-type semiconductor layer and the n-type semiconductor layer; a gate insulating film arranged to coat the p-type semiconductor layer and the n-type semiconductor layer; and a gate electrode joined with the gate insulating film. The protective film includes: a first layer made of Al2O3 and arranged adjacent to the p-type semiconductor layer and the n-type semiconductor layer to coat an edge of a p-n junction surface; a second layer made of an electrical insulation material different from Al2O3 and formed on the first layer; and an opening structure formed to pass through the first layer and the second layer. The gate insulating film is placed inside of the opening structure.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: September 15, 2015
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Yukihisa Ueno, Toru Oka, Kazuya Hasegawa
  • Publication number: 20150021617
    Abstract: A semiconductor device includes; a semiconductor layer mainly made of GaN; a protective film provided to have electrical insulation property and configured to coat the semiconductor layer; and an electrode provided to have electrical conductivity and configured to form a Schottky junction with the semiconductor layer. Tthe protective film includes: a first layer made of Al2O3 and arranged adjacent to the semiconductor layer; a second layer made of an electrical insulation material different from Al2O3 and formed on the first layer; and an opening structure formed to pass through the first layer and the second layer. The electrode is located inside of the opening structure.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 22, 2015
    Inventors: Yukihisa UENO, Toru OKA, Kazuya HASEGAWA
  • Publication number: 20150021618
    Abstract: A semiconductor device includes: a p-type semiconductor layer mainly made of GaN; an n-type semiconductor layer mainly made of GaN and joined with the p-type semiconductor layer; a protective film arranged to coat the p-type semiconductor layer and the n-type semiconductor layer; a gate insulating film arranged to coat the p-type semiconductor layer and the n-type semiconductor layer; and a gate electrode joined with the gate insulating film. The protective film includes: a first layer made of Al2O3 and arranged adjacent to the p-type semiconductor layer and the n-type semiconductor layer to coat an edge of a p-n junction surface; a second layer made of an electrical insulation material different from Al2O3 and formed on the first layer; and an opening structure formed to pass through the first layer and the second layer. The gate insulating film is placed inside of the opening structure.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 22, 2015
    Inventors: Yukihisa UENO, Toru OKA, Kazuya HASEGAWA