Patents by Inventor Yukinori Iguchi

Yukinori Iguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946149
    Abstract: Apparatus for producing alkali hydroxide and method for operating apparatus for producing alkali hydroxide are provided. A cooling chamber through which a coolant can pass is constructed by placing a separation wall in a cathode chamber on a side opposite to an ion-exchange membrane, and a flow rate adjuster, such as manual valves, which can adjust the supply flow rate of the coolant is placed in each unit cell. The electrolytic temperature of each unit cell is regulated at an optimum operating temperature depending on the current density by adjusting the flow rate of the coolant without individually adjusting the flow rate of salt water supplied to the unit cell or the concentration of the salt water.
    Type: Grant
    Filed: November 7, 2021
    Date of Patent: April 2, 2024
    Assignees: TOAGOSEI CO., LTD., KANEKA CORPORATION
    Inventors: Tsutomu Ohnishi, Tsugiyoshi Osakabe, Tatsurou Yamashita, Takuya Shimura, Mikihito Sugiyama, Yukinori Iguchi
  • Patent number: 11929412
    Abstract: A semiconductor device with favorable electrical characteristics is provided. A semiconductor device with stable electrical characteristics is provided. The semiconductor device includes a first insulating layer, a second insulating layer, a third insulating layer, a fourth insulating layer, a semiconductor layer, and a first conductive layer. The second insulating layer is positioned over the first insulating layer and the island-shaped semiconductor layer is positioned over the second insulating layer. The second insulating layer has an island shape having an end portion outside a region overlapping with the semiconductor layer. The fourth insulating layer covers the second insulating layer, the semiconductor layer, the third insulating layer, and the first conductive layer, is in contact with part of a top surface of the semiconductor layer, and is in contact with the first insulating layer outside the end portion of the second insulating layer.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: March 12, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masami Jintyou, Takahiro Iguchi, Yukinori Shima, Kenichi Okazaki
  • Publication number: 20220056604
    Abstract: Apparatus for producing alkali hydroxide and method for operating apparatus for producing alkali hydroxide are provided. A cooling chamber through which a coolant can pass is constructed by placing a separation wall in a cathode chamber on a side opposite to an ion-exchange membrane, and a flow rate adjuster, such as manual valves, which can adjust the supply flow rate of the coolant is placed in each unit cell. The electrolytic temperature of each unit cell is regulated at an optimum operating temperature depending on the current density by adjusting the flow rate of the coolant without individually adjusting the flow rate of salt water supplied to the unit cell or the concentration of the salt water.
    Type: Application
    Filed: November 7, 2021
    Publication date: February 24, 2022
    Applicants: TOAGOSEI CO., LTD., KANEKA CORPORATION
    Inventors: Tsutomu OHNISHI, Tsugiyoshi OSAKABE, Tatsurou YAMASHITA, Takuya SHIMURA, Mikihito SUGIYAMA, Yukinori IGUCHI
  • Publication number: 20190226104
    Abstract: Apparatus for producing alkali hydroxide and method for operating apparatus for producing alkali hydroxide are provided. A cooling chamber through which a coolant can pass is constructed by placing a separation wall in a cathode chamber on a side opposite to an ion-exchange membrane, and a flow rate adjuster, such as manual valves, which can adjust the supply flow rate of the coolant is placed in each unit cell. The electrolytic temperature of each unit cell is regulated at an optimum operating temperature depending on the current density by adjusting the flow rate of the coolant without individually adjusting the flow rate of salt water supplied to the unit cell or the concentration of the salt water.
    Type: Application
    Filed: March 31, 2017
    Publication date: July 25, 2019
    Applicants: TOAGOSEI CO., LTD., KANEKA CORPORATION
    Inventors: Tsutomu OHNISHI, Tsugiyoshi OSAKABE, Tatsurou YAMASHITA, Takuya SHIMURA, Mikihito SUGIYAMA, Yukinori IGUCHI
  • Patent number: 9315908
    Abstract: There is provided a method of production of chlorine.sodium hydroxide capable of being operated stably and economically by preventing calcium from being deposited in an ion exchange membrane. The liquid retention layer 3 having a liquid retention amount per unit volume of the liquid retention layer of 0.10 g-H2O/cm3 or more and 0.80 g-H2O/cm3 or less is put between the ion exchange membrane 12 and the gas diffusion electrode 16. Calcium ions transferred through the ion exchange membrane 12 easily diffuse, thereby making it possible to suppress increase in an electrolytic voltage and drop in current efficiency generated by deposition of the calcium ions inside the ion exchange membrane 12.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: April 19, 2016
    Assignees: CHLORINE ENGINEERS CORP., KANEKA CORPORATION, TOAGOSEI CO., LTD.
    Inventors: Tomonori Idutsu, Koji Saiki, Yukinori Iguchi, Kiyohito Asaumi
  • Patent number: 9181624
    Abstract: Disclosed is an electrolysis method, whereby sodium chloride concentration of an aqueous caustic soda solution formed through electrolysis in a two-chamber ion-exchange membrane sodium chloride electrolytic cell, which is equipped with a gas diffusion electrode as a cathode and divided into an anode chamber containing an anode and a cathode gas chamber containing the cathode that are partitioned by an ion-exchange membrane, is lowered. In a two-chamber ion-exchange membrane electrolytic cell (1) using a gas diffusion electrode (7), electrolysis is performed while reducing the pressure difference between the liquid pressure in the anode chamber and the gas pressure in the cathode gas chamber, i.e.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: November 10, 2015
    Assignees: CHLORINE ENGINEERS CORP., LTD., KANEKA CORPORATION, TOAGOSEI CO., LTD.
    Inventors: Mikihito Sugiyama, Yukinori Iguchi, Kiyohito Asaumi
  • Patent number: 8940139
    Abstract: Provided is a gas diffusion electrode equipped ion exchange membrane electrolyzer including an anode, an ion exchange membrane, and a cathode chamber in which a gas diffusion electrode is disposed, wherein the ion exchange membrane and a cathode chamber inner space in which the gas diffusion electrode is disposed are separated by a liquid retaining member, the outer periphery of the liquid retaining member is held in a void formed in a gasket or a cathode chamber frame constituting the cathode chamber, or the outer periphery and the end face of the outer periphery of the liquid retaining member are sealed, or the outer periphery of the liquid retaining member is joined to and integrated with the gasket.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: January 27, 2015
    Assignees: Chlorine Engineers Corp., Ltd., Toagosei Co., Ltd., Kaneka Corporation
    Inventors: Kiyohito Asaumi, Yukinori Iguchi, Mitsuharu Hamamori, Tomonori Izutsu
  • Publication number: 20130153433
    Abstract: There is provided a method of production of chlorine.sodium hydroxide capable of being operated stably and economically by preventing calcium from being deposited in an ion exchange membrane. The liquid retention layer 3 having a liquid retention amount per unit volume of the liquid retention layer of 0.10 g-H2O/cm3 or more and 0.80 g-H2O/cm3 or less is put between the ion exchange membrane 12 and the gas diffusion electrode 16. Calcium ions transferred through the ion exchange membrane 12 easily diffuse, thereby making it possible to suppress increase in an electrolytic voltage and drop in current efficiency generated by deposition of the calcium ions inside the ion exchange membrane 12.
    Type: Application
    Filed: October 1, 2010
    Publication date: June 20, 2013
    Inventors: Tomonori Idutsu, Koji Saiki, Yukinori Iguchi, Kiyohito Asaumi
  • Publication number: 20120145559
    Abstract: Provided is a gas diffusion electrode equipped ion exchange membrane electrolyzer including an anode, an ion exchange membrane, and a cathode chamber in which a gas diffusion electrode is disposed, wherein the ion exchange membrane and a cathode chamber inner space in which the gas diffusion electrode is disposed are separated by a liquid retaining member, the outer periphery of the liquid retaining member is held in a void formed in a gasket or a cathode chamber frame constituting the cathode chamber, or the outer periphery and the end face of the outer periphery of the liquid retaining member are sealed, or the outer periphery of the liquid retaining member is joined to and integrated with the gasket.
    Type: Application
    Filed: May 24, 2010
    Publication date: June 14, 2012
    Applicants: CHLORINE ENGINEERS CORP., LTD., KANEKA CORPORATION, TOAGOSEI CO., LTD.
    Inventors: Kiyohito Asaumi, Yukinori Iguchi, Mitsuharu Hamamori, Tomonori Izutsu
  • Publication number: 20120125782
    Abstract: Provided is a gas diffusion electrode equipped ion exchange membrane electrolyzer including an anode, an ion-exchange membrane, and a cathode chamber in which a gas diffusion electrode is disposed, wherein in a cathode gas chamber formed between a back plate of the cathode chamber and one side of the gas diffusion electrode opposite to the electrolytic surface, a gas-permeable elastic member is disposed between the gas diffusion electrode and the back plate, and the elastic member forms a conductive connection between the gas diffusion electrode and the back plate by making contact with corrosion-resistant conductive layers formed on the surfaces of a plurality of conductive members which are joined to the back plate.
    Type: Application
    Filed: May 24, 2010
    Publication date: May 24, 2012
    Applicants: CHLORINE ENGINEERS CORP., LTD., KANEKA CORPORATION, TOAGOSEI CO. LTD.
    Inventors: Kiyohito Asaumi, Yukinori Iguchi, Mitsuharu Hamamori
  • Publication number: 20120048743
    Abstract: Disclosed is an electrolysis method, whereby sodium chloride concentration of an aqueous caustic soda solution formed through electrolysis in a two-chamber ion-exchange membrane sodium chloride electrolytic cell, which is equipped with a gas diffusion electrode as a cathode and divided into an anode chamber containing an anode and a cathode gas chamber containing the cathode that are partitioned by an ion-exchange membrane, is lowered. In a two-chamber ion-exchange membrane electrolytic cell (1) using a gas diffusion electrode (7), electrolysis is performed while reducing the pressure difference between the liquid pressure in the anode chamber and the gas pressure in the cathode gas chamber, i.e.
    Type: Application
    Filed: April 15, 2010
    Publication date: March 1, 2012
    Applicants: CHLORINE ENGINEERS CORP., LTD, TOAGOSEI CO., LTD, KANEKA CORPORATION
    Inventors: Mikihito Sugiyama, Yukinori Iguchi, Kiyohito Asaumi