Patents by Inventor Yukinori Nagatani

Yukinori Nagatani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10658155
    Abstract: A phase contrast transmission electron microscope apparatus has a long-life phase modulator, enabling changes in quantity of phase modulation, barely absorbing the electron beams, and not being influenced by irradiation of the electron beams. An electron microscope comprises an electron gun, a first laser beam irradiating process, being positioned between the electron source and an object lens, for irradiating laser beams onto the electron beams radiated from the electron gun, a second laser beam irradiating process, being positioned on a focal plane behind the object lens, for focusing and irradiating the laser beams upon the focus of the electron beams penetrating through a specimen, and a screen or a 2D electron sensor for detecting a specimen image in the form of distribution of intensity of the electron beams by an optical system.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 19, 2020
    Assignee: Inter-University Research Institute Corporation National Institutes of Natural Sciences
    Inventor: Yukinori Nagatani
  • Publication number: 20190122855
    Abstract: A phase contrast transmission electron microscope apparatus has a long-life phase modulator, enabling changes in quantity of phase modulation, barely absorbing the electron beams, and not being influenced by irradiation of the electron beams. An electron microscope comprises an electron gun, a first laser beam irradiating process, being positioned between the electron source and an object lens, for irradiating laser beams onto the electron beams radiated from the electron gun, a second laser beam irradiating process, being positioned on a focal plane behind the object lens, for focusing and irradiating the laser beams upon the focus of the electron beams penetrating through a specimen, and a screen or a 2D electron sensor for detecting a specimen image in the form of distribution of intensity of the electron beams by an optical system.
    Type: Application
    Filed: March 28, 2017
    Publication date: April 25, 2019
    Applicant: INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION NATIONAL INSTITUTES OF NATURAL SCIENCES
    Inventor: Yukinori NAGATANI
  • Patent number: 9820910
    Abstract: A biological measurement apparatus of this invention includes (i) a micro piezoelectric element for vibrating a nerve cell of a subject without coming in contact with the nerve cell, (ii) an electromagnetic wave antenna for receiving an electromagnetic wave generated by the nerve cell vibrated by the micro piezoelectric element, and (iii) a computer for measuring an electric charge of the nerve cell based on the electromagnetic wave received by the electromagnetic wave antenna. Further, this biological measurement apparatus includes an electromagnetic wave antenna for emitting an electromagnetic wave to a nerve cell. This configuration provides an apparatus capable of measuring an electrical activity of a nerve cell in a living organism in real time and three-dimensionally at a spatial resolution of a nerve cell size. Moreover, this configuration provides an apparatus capable of individually giving electrical stimulations to any desired cells in the subject.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: November 21, 2017
    Assignee: OKAYAMA PREFECTURE
    Inventor: Yukinori Nagatani
  • Publication number: 20150182417
    Abstract: A biological measurement apparatus of this invention includes (i) a micro piezoelectric element for vibrating a nerve cell of a subject without coming in contact with the nerve cell, (ii) an electromagnetic wave antenna for receiving an electromagnetic wave generated by the nerve cell vibrated by the micro piezoelectric element, and (iii) a computer for measuring an electric charge of the nerve cell based on the electromagnetic wave received by the electromagnetic wave antenna. Further, this biological measurement apparatus includes an electromagnetic wave antenna for emitting an electromagnetic wave to a nerve cell. This configuration provides an apparatus capable of measuring an electrical activity of a nerve cell in a living organism in real time and three-dimensionally at a spatial resolution of a nerve cell size. Moreover, this configuration provides an apparatus capable of individually giving electrical stimulations to any desired cells in the subject.
    Type: Application
    Filed: March 12, 2015
    Publication date: July 2, 2015
    Inventor: Yukinori NAGATANI
  • Patent number: 9020576
    Abstract: A biological measurement apparatus of this invention includes (i) a micro piezoelectric element for vibrating a nerve cell of a subject without coming in contact with the nerve cell, (ii) an electromagnetic wave antenna for receiving an electromagnetic wave generated by the nerve cell vibrated by the micro piezoelectric element, and (iii) a computer for measuring an electric charge of the nerve cell based on the electromagnetic wave received by the electromagnetic wave antenna. Further, this biological measurement apparatus includes an electromagnetic wave antenna for emitting an electromagnetic wave to a nerve cell. This configuration provides an apparatus capable of measuring an electrical activity of a nerve cell in a living organism in real time and three-dimensionally at a spatial resolution of a nerve cell size. Moreover, this configuration provides an apparatus capable of individually giving electrical stimulations to any desired cells in the subject.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 28, 2015
    Assignee: Okayama Prefecture
    Inventor: Yukinori Nagatani
  • Publication number: 20110054345
    Abstract: A biological measurement apparatus of this invention includes (i) a micro piezoelectric element for vibrating a nerve cell of a subject without coming in contact with the nerve cell, (ii) an electromagnetic wave antenna for receiving an electromagnetic wave generated by the nerve cell vibrated by the micro piezoelectric element, and (iii) a computer for measuring an electric charge of the nerve cell based on the electromagnetic wave received by the electromagnetic wave antenna. Further, this biological measurement apparatus includes an electromagnetic wave antenna for emitting an electromagnetic wave to a nerve cell. This configuration provides an apparatus capable of measuring an electrical activity of a nerve cell in a living organism in real time and three-dimensionally at a spatial resolution of a nerve cell size. Moreover, this configuration provides an apparatus capable of individually giving electrical stimulations to any desired cells in the subject.
    Type: Application
    Filed: March 31, 2008
    Publication date: March 3, 2011
    Applicant: OKAYAMA PREFECTURE
    Inventor: Yukinori Nagatani